Soil Moisture Inversion Using AMSR-E Remote Sensing Data: An artificial neural network approach

被引:6
|
作者
Xie, Xingmei [1 ]
Xu, Jingwen [1 ]
Zhao, Junfang [2 ]
Liu, Shuang [1 ]
Wang, Peng [1 ]
机构
[1] Sichuan Agr Univ, Coll Resources & Environm, Chengdu 611130, Peoples R China
[2] Chinese Acad Sci, Chinese Acad Metrolog Sci, Beijing 100008, Peoples R China
关键词
Artificial neural network approach; soil moisture retrieval; AMSR-E;
D O I
10.4028/www.scientific.net/AMM.501-504.2073
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In this work artificial neural network with a back-propagation learning algorithm (BPNN) is employed to solve soil moisture retrieval for Sichuan Middle Hilly Area in China. Eighteen kinds of BPNN models have been developed using AMSR-E observations to retrieve soil moisture. The results show that the 18.7GHz band has some positive effect on improving soil moisture estimation accuracy while the 36.5GHz may interfere with deriving soil moisture, and vertical brightness temperature has a closer relationship with observed near-surface soil moisture than horizontal TB. The BPNN model driven by vertical and horizontal TB dataset at 6.9GHz and 10.7GHz frequency has the best performance of all the BPNN models withr value of 0.4968 and RMSE 10.2976%. Generally, the BPNN model is more suitable for soil moisture estimation than NASA product for the study area and can provide significant soil moisture information due to its ability of capturing non-linear and complex relationship.
引用
收藏
页码:2073 / +
页数:2
相关论文
共 50 条
  • [31] ESTIMATE OF SOIL MOISTURE USING REFINED MICROWAVE VEGETATION INDEX BASED ON AMSR-E
    Wang, Shu
    Jiang, Lingmei
    Zhao, Tianjie
    Yang, Juntao
    2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 3758 - 3761
  • [32] Soil moisture mapping and AMSR-E validation using the PSR in SMEX02
    Bindlish, Rajat
    Jackson, Thomas J.
    Gasiewski, Albin J.
    Klein, Marian
    Njoku, Eni G.
    REMOTE SENSING OF ENVIRONMENT, 2006, 103 (02) : 127 - 139
  • [33] Assessing early season drought condition using AMSR-E soil moisture product
    Chakraborty, Abhishek
    Seshasai, M. V. R.
    Murthy, C. S.
    Rao, S. V. C. Kameswara
    GEOMATICS NATURAL HAZARDS & RISK, 2013, 4 (02) : 164 - 186
  • [34] Downscaling of AMSR-E soil moisture with MODIS products using machine learning approaches
    Im, Jungho
    Park, Seonyoung
    Rhee, Jinyoung
    Baik, Jongjin
    Choi, Minha
    ENVIRONMENTAL EARTH SCIENCES, 2016, 75 (15)
  • [35] Near-surface soil moisture estimation using AMSR-E brightness temperature
    Al-Shrafany, D.
    Han, D.
    Rico-Ramirez, M. A.
    REMOTE SENSING AND HYDROLOGY, 2012, 352 : 11 - 15
  • [36] Downscaling of AMSR-E soil moisture with MODIS products using machine learning approaches
    Jungho Im
    Seonyoung Park
    Jinyoung Rhee
    Jongjin Baik
    Minha Choi
    Environmental Earth Sciences, 2016, 75
  • [37] Validation of surface soil moisture from AMSR-E using auxiliary spatial data in the transboundary Indus Basin
    Cheema, M. J. M.
    Bastiaanssen, W. G. M.
    Rutten, M. M.
    JOURNAL OF HYDROLOGY, 2011, 405 (1-2) : 137 - 149
  • [38] IMPROVING THE AMSR-E/NASA SOIL MOISTURE DATA PRODUCT USING IN-SITU MEASUREMENTS IN THE TIBETAN PLATEAU
    Xie, Qiuxia
    Menenti, Massimo
    Jia, Li
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 7085 - 7088
  • [39] Mapping global surface roughness using AMSR-E passive microwave remote sensing
    Chen, X. Z.
    Li, Y.
    Su, Y. X.
    Han, L. S.
    Liao, J. S.
    Yang, S. B.
    GEODERMA, 2014, 235 : 308 - 315
  • [40] Validation of AMSR-E soil moisture algorithms with ground based networks
    Jackson, T. J.
    Cosh, M. H.
    Bindlish, R.
    Du, J.
    IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET, 2007, : 1181 - 1184