Regulation of the Immune Response to α-Gal and Vector-borne Diseases

被引:32
|
作者
Cabezas-Cruz, Alejandro [1 ]
Mateos-Hernandez, Lourdes [2 ]
Perez-Cruz, Magdiel [1 ]
Valdes, James J. [3 ]
Fernandez de Mera, Isabel G. [2 ]
Villar, Margarita [2 ]
de la Fuente, Jose [2 ,4 ]
机构
[1] Univ Lille Nord France, Inst Pasteur Lille, CNRS UMR 8204, CIIL,INSERM U1019, Lille, France
[2] IREC CSIC UCLM JCCM, SaBio Inst Invest Recursos Cineget, Ciudad Real 13005, Spain
[3] Acad Sci Czech Republ, Inst Parasitol, Ctr Biol, CR-37005 Ceske Budejovice, Czech Republic
[4] Oklahoma State Univ, Ctr Vet Hlth Sci, Dept Vet Pathobiol, Stillwater, OK 74078 USA
关键词
RED MEAT; ANTI-GALACTOSE-ALPHA-1,3-GALACTOSE IGE; DELAYED ANAPHYLAXIS; HOST DEFENSES; TICK BITES; ANTI-GAL; ALLERGY; GALACTOSE-ALPHA-1,3-GALACTOSE; SENSITIZATION; TRANSMISSION;
D O I
10.1016/j.pt.2015.06.016
中图分类号
R38 [医学寄生虫学]; Q [生物科学];
学科分类号
07 ; 0710 ; 09 ; 100103 ;
摘要
Vector-borne diseases (VBD) challenge our understanding of emerging diseases. Recently, arthropod vectors have been involved in emerging anaphylactic diseases. In particular, the immunoglobulin E (IgE) antibody response to the carbohydrate Gal alpha 1-3Gal beta 1-(3)4GIcNAc-R (alpha-gal) following a tick bite was associated with allergies to red meat, cetuximab, and gelatin. By contrast, an anti-alpha-gal IgM antibody response was shown to protect against mosquito-borne malaria. Herein, we highlight the interplay between the gut microbiota, vectors, transmitted pathogens, and the regulation of the immune response as a model to understand the protective or allergic effect of alpha-gal. Establishing the source of alpha-gal in arthropod vectors and the immune response to vector bites and transmitted pathogens will be essential for diagnosing, treating, and ultimately preventing these emerging anaphylactic and other vector-borne diseases.
引用
收藏
页码:470 / 476
页数:7
相关论文
共 50 条
  • [41] 'Emerging vector-borne diseases' in the horse
    van Oldruitenborgh-Oosterbaan, M. M. Sloet
    Goehring, L. S.
    Koopmans, M. P. G.
    van Rijn, P. A.
    van Maanen, C.
    TIJDSCHRIFT VOOR DIERGENEESKUNDE, 2009, 134 (10) : 439 - 447
  • [42] EPIDEMIOLOGIC MODELS IN STUDIES OF VECTOR-BORNE DISEASES
    MACDONALD, G
    PUBLIC HEALTH REPORTS, 1961, 76 (09) : 753 - 764
  • [43] PROBLEMS OF VECTOR-BORNE DISEASES AND IRRIGATION PROJECTS
    SERVICE, MW
    INSECT SCIENCE AND ITS APPLICATION, 1984, 5 (03): : 227 - 231
  • [44] Call for Papers: Vector-Borne and Zoonotic Diseases
    Higgs, Stephen
    VECTOR-BORNE AND ZOONOTIC DISEASES, 2022, 22 (12) : 571 - 571
  • [45] SURVEILLANCE OF VECTOR-BORNE DISEASES IN EQUIDS IN FRANCE
    Leblond, Agnes
    Valon, Francois
    Hendrikx, Pascal
    BULLETIN DE L ACADEMIE VETERINAIRE DE FRANCE, 2010, 163 (02): : 149 - 157
  • [46] Reptile vector-borne diseases of zoonotic concern
    Mendoza-Roldan, Jairo Alfonso
    Mendoza-Roldan, Miguel Angel
    Otranto, Domenico
    INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE, 2021, 15 : 132 - 142
  • [47] The role of parasite manipulation in vector-borne diseases
    Beaulieu, Meredith R. Spence
    EVOLUTION MEDICINE AND PUBLIC HEALTH, 2019, (01) : 106 - 107
  • [48] The epidemic threshold of vector-borne diseases with seasonality
    Bacaer, Nicolas
    Guernaoui, Souad
    JOURNAL OF MATHEMATICAL BIOLOGY, 2006, 53 (03) : 421 - 436
  • [49] Present status of vector-borne diseases in Indonesia
    Rodhain, F
    BULLETIN DE LA SOCIETE DE PATHOLOGIE EXOTIQUE, 2001, 93 (05): : 348 - 352
  • [50] Emerging vector-borne diseases: The diagnostic challenge
    Ford, RB
    VETERINARY TECHNICIAN, 2003, 24 (03): : 183 - 183