Regulation of the Immune Response to α-Gal and Vector-borne Diseases

被引:32
|
作者
Cabezas-Cruz, Alejandro [1 ]
Mateos-Hernandez, Lourdes [2 ]
Perez-Cruz, Magdiel [1 ]
Valdes, James J. [3 ]
Fernandez de Mera, Isabel G. [2 ]
Villar, Margarita [2 ]
de la Fuente, Jose [2 ,4 ]
机构
[1] Univ Lille Nord France, Inst Pasteur Lille, CNRS UMR 8204, CIIL,INSERM U1019, Lille, France
[2] IREC CSIC UCLM JCCM, SaBio Inst Invest Recursos Cineget, Ciudad Real 13005, Spain
[3] Acad Sci Czech Republ, Inst Parasitol, Ctr Biol, CR-37005 Ceske Budejovice, Czech Republic
[4] Oklahoma State Univ, Ctr Vet Hlth Sci, Dept Vet Pathobiol, Stillwater, OK 74078 USA
关键词
RED MEAT; ANTI-GALACTOSE-ALPHA-1,3-GALACTOSE IGE; DELAYED ANAPHYLAXIS; HOST DEFENSES; TICK BITES; ANTI-GAL; ALLERGY; GALACTOSE-ALPHA-1,3-GALACTOSE; SENSITIZATION; TRANSMISSION;
D O I
10.1016/j.pt.2015.06.016
中图分类号
R38 [医学寄生虫学]; Q [生物科学];
学科分类号
07 ; 0710 ; 09 ; 100103 ;
摘要
Vector-borne diseases (VBD) challenge our understanding of emerging diseases. Recently, arthropod vectors have been involved in emerging anaphylactic diseases. In particular, the immunoglobulin E (IgE) antibody response to the carbohydrate Gal alpha 1-3Gal beta 1-(3)4GIcNAc-R (alpha-gal) following a tick bite was associated with allergies to red meat, cetuximab, and gelatin. By contrast, an anti-alpha-gal IgM antibody response was shown to protect against mosquito-borne malaria. Herein, we highlight the interplay between the gut microbiota, vectors, transmitted pathogens, and the regulation of the immune response as a model to understand the protective or allergic effect of alpha-gal. Establishing the source of alpha-gal in arthropod vectors and the immune response to vector bites and transmitted pathogens will be essential for diagnosing, treating, and ultimately preventing these emerging anaphylactic and other vector-borne diseases.
引用
收藏
页码:470 / 476
页数:7
相关论文
共 50 条
  • [21] Vector-borne Diseases: An Ongoing Threat
    Moore, Karen S.
    JNP-JOURNAL FOR NURSE PRACTITIONERS, 2019, 15 (06): : 449 - 457
  • [22] Blocking transmission of vector-borne diseases
    Schorderet-Weber, Sandra
    Noack, Sandra
    Selzer, Paul M.
    Kaminsky, Ronald
    INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE, 2017, 7 (01): : 90 - 109
  • [23] An Evolutionary Perspective on Vector-Borne Diseases
    Powell, Jeffrey R.
    FRONTIERS IN GENETICS, 2019, 10
  • [24] Epidemiology of Vector-Borne Diseases 2.0
    Sereno, Denis
    MICROORGANISMS, 2022, 10 (08)
  • [25] Climate change and vector-borne diseases
    Rogers, D. J.
    Randolph, S. E.
    ADVANCES IN PARASITOLOGY, VOL 62: GLOBAL MAPPING OF INFECTIOUS DISEASES: METHODS, EXAMPLES AND EMERGING APPLICATIONS, 2006, 62 : 345 - 381
  • [26] Population biology of vector-borne diseases
    Peper, Steven T.
    JOURNAL OF WILDLIFE MANAGEMENT, 2022, 86 (02):
  • [27] POPULATION BIOLOGY OF VECTOR-BORNE DISEASES
    Peterson, J. K.
    Drake, John M.
    Bonsall, Michael B.
    Strand, Michael R.
    QUARTERLY REVIEW OF BIOLOGY, 2023, 98 (03): : 190 - 190
  • [28] Vector-borne diseases in cats in Germany
    Bergmann, Michele
    Hartmann, Katrin
    TIERAERZTLICHE PRAXIS AUSGABE KLEINTIERE HEIMTIERE, 2017, 45 (05): : 329 - 335
  • [29] The immunopathology of canine vector-borne diseases
    Michael J Day
    Parasites & Vectors, 4
  • [30] Bedbugs and Vector-Borne Diseases Reply
    Tamma, Pranita D.
    Sklansky, Daniel J.
    Palazzi, Debra L.
    Swami, Sanjeev K.
    Milstone, Aaron M.
    CLINICAL INFECTIOUS DISEASES, 2014, 59 (09)