Atom-by-Atom Fabrication of Single and Few Dopant Quantum Devices

被引:42
|
作者
Wyrick, Jonathan [1 ]
Wang, Xiqiao [1 ,2 ,3 ]
Kashid, Ranjit, V [1 ]
Namboodiri, Pradeep [1 ]
Schmucker, Scott W. [1 ,2 ]
Hagmann, Joseph A. [1 ]
Liu, Keyi [1 ,2 ,4 ]
Stewart, Michael D., Jr. [1 ]
Richter, Curt A. [1 ]
Bryant, Garnett W. [1 ]
Silver, Richard M. [1 ]
机构
[1] NIST, Nanoscale Device Characterizat Div, Gaithersburg, MD 20899 USA
[2] Univ Maryland, Joint Quantum Inst, College Pk, MD 20742 USA
[3] Univ Maryland, Chem Phys Program, College Pk, MD 20742 USA
[4] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
关键词
charge transport; nanodevices; quantum dots; single electron transistors; SCALE DESORPTION; SILICON; SI; TRANSPORT; DONORS; SPECTROSCOPY; TEMPERATURE; CONFINEMENT; ACCEPTORS; PHOSPHINE;
D O I
10.1002/adfm.201903475
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Atomically precise fabrication has an important role to play in developing atom-based electronic devices for use in quantum information processing, quantum materials research, and quantum sensing. Atom-by-atom fabrication has the potential to enable precise control over tunnel coupling, exchange coupling, on-site charging energies, and other key properties of basic devices needed for solid-state quantum computing and analog quantum simulation. Using hydrogen-based scanning probe lithography, individual dopant atoms are deterministically placed relative to atomically aligned contacts and gates to build single electron transistors, single atom transistors, and gate-controlled quantum sensing devices. The key steps required to fabricate and demonstrate the essential building blocks needed for spin selective initialization/readout and coherent quantum manipulation are described.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Development of a scanning atom probe and atom-by-atom mass analysis of diamonds
    O. Nishikawa
    T. Sekine
    Y. Ohtani
    K. Maeda
    Y. Numada
    M. Watanabe
    M. Iwatsuki
    S. Aoki
    J. Itoh
    K. Yamanaka
    Applied Physics A, 1998, 66 : S11 - S16
  • [42] Learning Overcomplete Dictionaries Based on Atom-by-Atom Updating
    Sadeghi, Mostafa
    Babaie-Zadeh, Massoud
    Jutten, Christian
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (04) : 883 - 891
  • [43] Enhanced atom-by-atom assembly of arbitrary tweezer arrays
    Schymik, Kai-Niklas
    Lienhard, Vincent
    Barredo, Daniel
    Scholl, Pascal
    Williams, Hannah
    Browaeys, Antoine
    Lahaye, Thierry
    PHYSICAL REVIEW A, 2020, 102 (06)
  • [44] Development of a scanning atom probe and atom-by-atom mass analysis of diamonds
    Deptartment of Materials Sciences and Engineering, Kanazawa Institute of Technology, 7-1 Ohgigaoka, Nonoichi, Kanazawa-South 921-8501, Japan
    不详
    不详
    不详
    Appl Phys A, SUPPL. 1 (S11-S16):
  • [45] Atom-by-Atom Observation of Grain Boundary Migration in Graphene
    Kurasch, Simon
    Kotakoski, Jani
    Lehtinen, Ossi
    Skakalova, Viera
    Smet, Jurgen
    Krill, Carl E., III
    Krasheninnikov, Arkady V.
    Kaiser, Ute
    NANO LETTERS, 2012, 12 (06) : 3168 - 3173
  • [46] Atom-by-atom analysis of diamond, graphite, and vitreous carbon by the scanning atom probe
    Nishikawa, O
    Ohtani, Y
    Maeda, K
    Watanabe, M
    Tanaka, K
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2000, 18 (02): : 653 - 660
  • [47] Core and valence electrons in atom-by-atom descriptions of molecules
    Fliszár, S
    Vauthier, EC
    Barone, V
    ADVANCES IN QUANTUM CHEMISTRY, VOL 36: FROM ELECTRONIC STRUCTURE TO TIME-DEPENDENT PROCESSES, 1999, 36 : 27 - 44
  • [48] Atom-by-Atom Construction of a Cyclic Artificial Molecule in Silicon
    Wyrick, Jonathan
    Wang, Xiqiao
    Namboodiri, Pradeep
    Schmucker, Scott W.
    Kashid, Ranjit V.
    Silver, Richard M.
    NANO LETTERS, 2018, 18 (12) : 7502 - 7508
  • [49] Atom-by-atom analysis of global downhill protein folding
    Mourad Sadqi
    David Fushman
    Victor Muñoz
    Nature, 2006, 442 : 317 - 321
  • [50] From few-atom to many-atom quantum dynamics
    Micha, DA
    ADVANCES IN QUANTUM CHEMISTRY, VOL 41, 2002, 41 : 139 - 159