Deep-UV biological imaging by lanthanide ion molecular protection

被引:28
|
作者
Kumamoto, Yasuaki [1 ,2 ,4 ]
Fujita, Katsumasa [1 ]
Smith, Nicholas Isaac [3 ]
Kawata, Satoshi [1 ,2 ]
机构
[1] Osaka Univ, Dept Appl Phys, 2-1 Yamadaoka, Suita, Osaka 5650871, Japan
[2] RIKEN, Near Field Nanophoton Res Team, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
[3] Osaka Univ, Immunol Frontier Res Ctr, 3-1 Yamadaoka, Suita, Osaka 5650871, Japan
[4] Kyoto Prefectural Univ Med, Dept Pathol & Cell Regulat, Kamigyo Ku, 465 Kajii Cho Kawaramachi Hirokoji, Kyoto 6028566, Japan
来源
BIOMEDICAL OPTICS EXPRESS | 2016年 / 7卷 / 01期
关键词
RESONANCE RAMAN-SPECTROSCOPY; AROMATIC-AMINO-ACIDS; EXCITED-STATE CHEMISTRY; NUCLEIC-ACID; AQUEOUS-SOLUTION; INTRACELLULAR PROTEIN; DNA; MICROSCOPY; COMPLEXES; FLUORESCENCE;
D O I
10.1364/BOE.7.000158
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Deep-UV (DUV) light is a sensitive probe for biological molecules such as nucleobases and aromatic amino acids due to specific absorption. However, the use of DUV light for imaging is limited because DUV can destroy or denature target molecules in a sample. Here we show that trivalent ions in the lanthanide group can suppress molecular photodegradation under DUV exposure, enabling a high signal-to-noise ratio and repetitive DUV imaging of nucleobases in cells. Underlying mechanisms of the photodegradation suppression can be excitation relaxation of the DUV-absorptive molecules due to energy transfer to the lanthanide ions, and/or avoiding ionization and reactions with surrounding molecules, including generation of reactive oxygen species, which can modify molecules that are otherwise transparent to DUV light. This approach, directly removing excited energy at the fundamental origin of cellular photodegradation, indicates an important first step towards the practical use of DUV imaging in a variety of biological applications. (C) 2015 Optical Society of America
引用
收藏
页码:158 / 170
页数:13
相关论文
共 50 条
  • [41] GaN to AIN: Materials for deep-UV emitters
    Allerman, AA
    Fischer, AJ
    Crawford, MH
    Lee, SR
    Bogart, KHA
    Mitchell, CC
    Koleske, DD
    Follstaedt, DM
    Provencio, PP
    Missert, NA
    2003 IEEE LEOS ANNUAL MEETING CONFERENCE PROCEEDINGS, VOLS 1 AND 2, 2003, : 874 - 875
  • [42] THERMALLY STABLE, DEEP-UV RESIST MATERIALS
    TURNER, SR
    AHN, KD
    WILLSON, CG
    ACS SYMPOSIUM SERIES, 1987, 346 : 200 - 210
  • [43] Reproducible Deep-UV SERRS on Aluminum Nanovoids
    Sigle, Daniel O.
    Perkins, Elaine
    Baumberg, Jeremy J.
    Mahajan, Sumeet
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2013, 4 (09): : 1449 - 1452
  • [44] A NOVEL POSITIVE RESIST FOR DEEP-UV LITHOGRAPHY
    YAMAOKA, T
    NISHIKI, M
    KOSEKI, K
    KOSHIBA, M
    POLYMER ENGINEERING AND SCIENCE, 1989, 29 (13): : 856 - 858
  • [45] Deep-UV Microsphere-Assisted Ultramicroscopy
    Allen, Kenneth W.
    Liberman, Vladimir
    Rothschild, Mordechai
    Limberopoulos, Nicholaos I.
    Walker, Dennis E., Jr.
    Urbas, Augustine M.
    Astratov, Vasily N.
    2015 17th International Conference on Transparent Optical Networks (ICTON), 2015,
  • [46] Deep-UV laser-based fluorescence lifetime imaging microscopy of single molecules
    Li, Q
    Ruckstuhl, T
    Seeger, S
    JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (24): : 8324 - 8329
  • [47] Designing a deep-UV nonlinear optical monofluorophosphate
    Qingran Ding
    Xingyu Zhang
    Zheshuai Lin
    Zheyao Xiong
    Yusong Wang
    Xifa Long
    Sangen Zhao
    Maochun Hong
    Junhua Luo
    Science China(Chemistry), 2022, (09) : 1710 - 1714
  • [48] Spectrophotometry - Takes measure of deep-UV lithography
    Hind, A
    PHOTONICS SPECTRA, 2001, 35 (12) : 82 - +
  • [49] Electron beam processing of deep-UV resist
    Ross, MF
    Livesay, WR
    Petrillo, KE
    ADVANCES IN RESIST TECHNOLOGY AND PROCESSING XIV, 1997, 3049 : 676 - 691
  • [50] Deep-UV laser-ablation system
    不详
    MRS BULLETIN, 2001, 26 (08) : 607 - 607