Deep-UV biological imaging by lanthanide ion molecular protection

被引:28
|
作者
Kumamoto, Yasuaki [1 ,2 ,4 ]
Fujita, Katsumasa [1 ]
Smith, Nicholas Isaac [3 ]
Kawata, Satoshi [1 ,2 ]
机构
[1] Osaka Univ, Dept Appl Phys, 2-1 Yamadaoka, Suita, Osaka 5650871, Japan
[2] RIKEN, Near Field Nanophoton Res Team, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
[3] Osaka Univ, Immunol Frontier Res Ctr, 3-1 Yamadaoka, Suita, Osaka 5650871, Japan
[4] Kyoto Prefectural Univ Med, Dept Pathol & Cell Regulat, Kamigyo Ku, 465 Kajii Cho Kawaramachi Hirokoji, Kyoto 6028566, Japan
来源
BIOMEDICAL OPTICS EXPRESS | 2016年 / 7卷 / 01期
关键词
RESONANCE RAMAN-SPECTROSCOPY; AROMATIC-AMINO-ACIDS; EXCITED-STATE CHEMISTRY; NUCLEIC-ACID; AQUEOUS-SOLUTION; INTRACELLULAR PROTEIN; DNA; MICROSCOPY; COMPLEXES; FLUORESCENCE;
D O I
10.1364/BOE.7.000158
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Deep-UV (DUV) light is a sensitive probe for biological molecules such as nucleobases and aromatic amino acids due to specific absorption. However, the use of DUV light for imaging is limited because DUV can destroy or denature target molecules in a sample. Here we show that trivalent ions in the lanthanide group can suppress molecular photodegradation under DUV exposure, enabling a high signal-to-noise ratio and repetitive DUV imaging of nucleobases in cells. Underlying mechanisms of the photodegradation suppression can be excitation relaxation of the DUV-absorptive molecules due to energy transfer to the lanthanide ions, and/or avoiding ionization and reactions with surrounding molecules, including generation of reactive oxygen species, which can modify molecules that are otherwise transparent to DUV light. This approach, directly removing excited energy at the fundamental origin of cellular photodegradation, indicates an important first step towards the practical use of DUV imaging in a variety of biological applications. (C) 2015 Optical Society of America
引用
收藏
页码:158 / 170
页数:13
相关论文
共 50 条
  • [1] Semiconductor inspection moves to deep-UV imaging
    Tower, JR
    PHOTONICS SPECTRA, 2004, 38 (07) : 100 - 101
  • [2] Deep-UV fluorescence lifetime imaging microscopy
    Christiaan Jde Jong
    Alireza Lajevardipour
    Mindaugas Geceviius
    Martynas Beresna
    Gediminas Gervinskas
    Peter GKazansky
    Yves Bellouard
    Andrew HAClayton
    Saulius Juodkazis
    Photonics Research, 2015, (05) : 283 - 288
  • [3] Deep-UV fluorescence lifetime imaging microscopy
    de Jong, Christiaan J.
    Lajevardipour, Alireza
    Gecevicius, Mindaugas
    Beresna, Martynas
    Gervinskas, Gediminas
    Kazansky, Peter G.
    Bellouard, Yves
    Clayton, Andrew H. A.
    Juodkazis, Saulius
    PHOTONICS RESEARCH, 2015, 3 (05) : 283 - 288
  • [4] Deep-UV fluorescence lifetime imaging microscopy
    Christiaan J.de Jong
    Alireza Lajevardipour
    Mindaugas Gecevi?ius
    Martynas Beresna
    Gediminas Gervinskas
    Peter G.Kazansky
    Yves Bellouard
    Andrew H.A.Clayton
    Saulius Juodkazis
    Photonics Research, 2015, 3 (05) : 283 - 288
  • [5] Investigation of a CW deep-UV copper ion laser
    Yu, JH
    Li, JZ
    HIGH-POWER LASERS: SOLID STATE, GAS, EXCIMER, AND OTHER ADVANCED LASERS II, 1998, 3549 : 188 - 194
  • [6] DEEP-UV CONFOCAL FLUORESCENCE IMAGING AND SUPER-RESOLUTION OPTICAL MICROSCOPY OF BIOLOGICAL SAMPLES
    Smith, Trevor A.
    Hirvonen, Liisa M.
    Lincoln, Craig N.
    Hao, Xiaotao
    JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES, 2012, 5 (04)
  • [8] Shaping the deep-UV
    James Baxter
    Nature Photonics, 2011, 5 (11) : 645 - 645
  • [9] DEEP-UV PHOTOLITHOGRAPHY
    MIMURA, Y
    OHKUBO, T
    TAKEUCHI, T
    SEKIKAWA, K
    JAPANESE JOURNAL OF APPLIED PHYSICS, 1978, 17 (03) : 541 - 550
  • [10] Deep-UV materials
    Ehrt, Doris
    ADVANCED OPTICAL TECHNOLOGIES, 2018, 7 (04) : 225 - 242