Nonhomogeneous fractional Poisson processes

被引:10
|
作者
Wang, Xiao-Tian [1 ]
Zhang, Shi-Ying
Fan, Shen
机构
[1] Tianjin Univ, Sch Management, Tianjin 300072, Peoples R China
[2] Zhejiang Wanli Univ, Comp & Informat Sch, Ningbo 315100, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1016/j.chaos.2005.09.063
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we propose a class of non-Gaussian stationary increment processes, named nonhomogeneous fractional Poisson processes W-H((j))(t), which permit the study of the effects of long-range dependance in a large number of fields including quantum physics and finance. The processes W-H((j))(t) are self-similar in a wide sense, exhibit more fatter tail than Gaussian processes, and converge to the Gaussian processes in distribution in some cases. In addition, we also show that the intensity function lambda(t) strongly influences the existence of the highest finite moment of W-H((j))(t) and the behaviour of the tail probability of W-H((j))(t). (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:236 / 241
页数:6
相关论文
共 50 条
  • [31] Accelerated life testing models for nonhomogeneous Poisson processes
    Schabe, H
    STATISTICAL PAPERS, 1998, 39 (03) : 291 - 312
  • [32] Large deviations for fractional Poisson processes
    Beghin, Luisa
    Macci, Claudio
    STATISTICS & PROBABILITY LETTERS, 2013, 83 (04) : 1193 - 1202
  • [33] Parameter estimation for fractional Poisson processes
    Cahoy, Dexter O.
    Uchaikin, Vladimir V.
    Woyczynski, Wojbor A.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (11) : 3106 - 3120
  • [34] Some Compound Fractional Poisson Processes
    Khandakar, Mostafizar
    Kataria, Kuldeep Kumar
    FRACTAL AND FRACTIONAL, 2023, 7 (01)
  • [35] A Semigroup Approach to Fractional Poisson Processes
    Carlos Lizama
    Rolando Rebolledo
    Complex Analysis and Operator Theory, 2018, 12 : 777 - 785
  • [36] A Semigroup Approach to Fractional Poisson Processes
    Lizama, Carlos
    Rebolledo, Rolando
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2018, 12 (03) : 777 - 785
  • [37] NONHOMOGENEOUS FILTERED POISSON PROCESSES IN META DIMENSIONAL EUCLIDEAN SPACE
    LORBER, HW
    ANNALS OF MATHEMATICAL STATISTICS, 1971, 42 (03): : 1142 - &
  • [38] Exact Statistical Inference for Some Parametric Nonhomogeneous Poisson Processes
    Lindqvist, Bo Henry
    Taraldsen, Gunnar
    JIRSS-JOURNAL OF THE IRANIAN STATISTICAL SOCIETY, 2013, 12 (01): : 113 - 126
  • [39] Estimating arrival rate of nonhomogeneous Poisson processes with semidefinite programming
    Alizadeh, Farid
    Papp, David
    ANNALS OF OPERATIONS RESEARCH, 2013, 208 (01) : 291 - 308
  • [40] NHPoisson: An R Package for Fitting and Validating Nonhomogeneous Poisson Processes
    Cebrian, Ana C.
    Abaurrea, Jesus
    Asin, Jesus
    JOURNAL OF STATISTICAL SOFTWARE, 2015, 64 (06): : 1 - 25