A Semigroup Approach to Fractional Poisson Processes

被引:0
|
作者
Lizama, Carlos [1 ]
Rebolledo, Rolando [2 ]
机构
[1] Univ Santiago Chile, Fac Ciencias, Dept Matemat & Ciencia Computac, Casilla 307,Correo 2, Santiago, Chile
[2] Univ Valparaiso, CIMFAV, Fac Ingn, Gen Cruz 222, Valparaiso, Chile
关键词
Fractional Poisson process; Markov semigroup; Chapman-Kolmogorov equation;
D O I
10.1007/s11785-018-0763-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is well-known that fractional Poisson processes (FPP) constitute an important example of a non-Markovian structure. That is, the FPP has no Markov semigroup associated via the customary Chapman-Kolmogorov equation. This is physically interpreted as the existence of a memory effect. Here, solving a difference-differential equation, we construct a family of contraction semigroups , . If denotes the Banach space of continuous maps from into the Banach space of endomorphisms of a Banach space X, it holds that and is a continuous map from ]0, 1] into . Moreover, becomes the Markov semigroup of a Poisson process.
引用
收藏
页码:777 / 785
页数:9
相关论文
共 50 条
  • [1] A Semigroup Approach to Fractional Poisson Processes
    Carlos Lizama
    Rolando Rebolledo
    Complex Analysis and Operator Theory, 2018, 12 : 777 - 785
  • [2] A SEMIGROUP APPROACH TO POISSON APPROXIMATION
    DEHEUVELS, P
    PFEIFER, D
    ANNALS OF PROBABILITY, 1986, 14 (02): : 663 - 676
  • [3] Poisson fractional processes
    Wang, XT
    Wen, ZX
    CHAOS SOLITONS & FRACTALS, 2003, 18 (01) : 169 - 177
  • [4] A semigroup approach to fractional powers
    Ralph deLaubenfels
    Javier Pastor
    Semigroup Forum, 2008, 76 : 385 - 426
  • [5] A semigroup approach to fractional powers
    deLaubenfels, Ralph
    Pastor, Javier
    SEMIGROUP FORUM, 2008, 76 (03) : 385 - 426
  • [6] Nonhomogeneous fractional Poisson processes
    Wang, Xiao-Tian
    Zhang, Shi-Ying
    Fan, Shen
    CHAOS SOLITONS & FRACTALS, 2007, 31 (01) : 236 - 241
  • [7] On the integral of fractional Poisson processes
    Orsingher, Enzo
    Polito, Federico
    STATISTICS & PROBABILITY LETTERS, 2013, 83 (04) : 1006 - 1017
  • [8] Filtered fractional Poisson processes
    Rao, B. L. S. Prakasa
    STATISTICAL METHODOLOGY, 2015, 26 : 124 - 134
  • [9] Large deviations for fractional Poisson processes
    Beghin, Luisa
    Macci, Claudio
    STATISTICS & PROBABILITY LETTERS, 2013, 83 (04) : 1193 - 1202
  • [10] Parameter estimation for fractional Poisson processes
    Cahoy, Dexter O.
    Uchaikin, Vladimir V.
    Woyczynski, Wojbor A.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (11) : 3106 - 3120