Nonhomogeneous fractional Poisson processes

被引:10
|
作者
Wang, Xiao-Tian [1 ]
Zhang, Shi-Ying
Fan, Shen
机构
[1] Tianjin Univ, Sch Management, Tianjin 300072, Peoples R China
[2] Zhejiang Wanli Univ, Comp & Informat Sch, Ningbo 315100, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1016/j.chaos.2005.09.063
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we propose a class of non-Gaussian stationary increment processes, named nonhomogeneous fractional Poisson processes W-H((j))(t), which permit the study of the effects of long-range dependance in a large number of fields including quantum physics and finance. The processes W-H((j))(t) are self-similar in a wide sense, exhibit more fatter tail than Gaussian processes, and converge to the Gaussian processes in distribution in some cases. In addition, we also show that the intensity function lambda(t) strongly influences the existence of the highest finite moment of W-H((j))(t) and the behaviour of the tail probability of W-H((j))(t). (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:236 / 241
页数:6
相关论文
共 50 条
  • [1] ON NONHOMOGENEOUS, SPATIAL POISSON PROCESSES
    MCDONALD, D
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1989, 17 (02): : 183 - 195
  • [2] Nonhomogeneous poisson processes and logconcavity
    Pellerey, Franco
    Shaked, Moshe
    Zinn, Joel
    2000, Cambridge University Press (14)
  • [3] Surveillance of Nonhomogeneous Poisson Processes
    Richards, Sarah C.
    Purdy, Gregory
    Woodall, William H.
    TECHNOMETRICS, 2015, 57 (03) : 388 - 394
  • [4] Nonhomogeneous Poisson processes and logconcavity
    Pellerey, F
    Shaked, M
    Zinn, J
    PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2000, 14 (03) : 353 - 373
  • [5] SIMULATION OF NONHOMOGENEOUS POISSON PROCESSES BY THINNING
    LEWIS, PAW
    SHEDLER, GS
    NAVAL RESEARCH LOGISTICS, 1979, 26 (03) : 403 - 413
  • [6] A RANK TEST FOR NONHOMOGENEOUS POISSON PROCESSES
    MCDONALD, D
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1984, 16 (01) : 23 - 24
  • [7] LIMIT THEOREMS FOR THE FRACTIONAL NONHOMOGENEOUS POISSON PROCESS
    Leonenko, Nikolai
    Scalas, Enrico
    TRlNH, Mailan
    JOURNAL OF APPLIED PROBABILITY, 2019, 56 (01) : 246 - 264
  • [8] Nonhomogeneous Poisson processes as overhaul models
    Dykstra, RL
    ElBarmi, H
    Guffey, JM
    Wright, FT
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1996, 24 (02): : 217 - 228
  • [9] Poisson fractional processes
    Wang, XT
    Wen, ZX
    CHAOS SOLITONS & FRACTALS, 2003, 18 (01) : 169 - 177
  • [10] SOME REMARKS ON MTBFS FOR NONHOMOGENEOUS POISSON PROCESSES
    KOSHIMAE, H
    TANAKA, H
    OSAKI, S
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1994, E77A (01) : 144 - 149