Incorporating FEA in an Undergraduate Biomechanics Course

被引:0
|
作者
Wu, Yi [1 ]
Khalilollahi, Amir [1 ]
Martone, Philip [1 ]
机构
[1] Penn State Univ, Behrend Coll, Erie, PA 16563 USA
关键词
Bioengineering; Finite Element Analysis; project-based courses;
D O I
暂无
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
A bioengineering course is offered to senior students in the Mechanical Engineering major as an elective at Penn State Behrend in the first semester of their senior year. On average around 20 students enroll in this project-based course and 72% of their grade depends on three comprehensive group projects, one of which is to design a bone plate for a fractured femur. 6% of the grade comes from an individual application presentation, discussing different circumstances in which the concepts in mechanical engineering can be applied to solve/analyze biomedical problems. Background of physiology is introduced in the class while the majority of applicable engineering knowledge was learned in prerequisite courses, such as statics, dynamics, strength of materials, system dynamics, etc. Finite Element Analysis (FEA), an elective offered in both semesters of senior year, is not a prerequisite for this bioengineering course. Most of students enrolled in our bioengineering course either do not have FEA course or are taking FEA concurrently. Therefore in spite of its popularity in the areas related to biomechanics, thus far FEA has not been incorporated in this bioengineering course. Previously, the fractured femur project utilized the applicable theoretical analyses including those from statics, strength of materials, materials, and machine design. In Fall 2015, the instructor of bioengineering course made an effort to have an FEA study on femur and ensuing presentation be completed by a willing student. This student was taking FEA simultaneously with bioengineering, and was scheduled to present during the last week of semester. The instructor of FEA wrote an introductory manual of FEA procedures to analyze a healthy femur using a CAD model of the femur. Then the student used the manual to initiate the FEA study of the fractured femur. A major challenge to the student was the complicated loading and assembly feature of the bone plus the addition of bone plate. After a several week struggle and independent learning, while guided by the faculty members of bioengineering and FEA, the student was able to accomplish the FEA analysis and presented the results to the class. The discrepancy between FEA results and theoretical analysis was shown to be less than 5% in most results. The presentation also included FEA results for a diverse realistic loading and boundary conditions. Since all students had finished the fractured femur project, they actively participated in a meaningful discussion after the presentation. The completion of this project demonstrated the feasibility and importance of incorporating FEA in our bioengineering course. In addition, the presenting student was able to complete a working manual for the FEA analysis of the fractured femur, which can be passed to the future students of this course. A plan is to include FEA in the project as a bonus activity, and regarding the formation of project teams, the instructor would appoint a member who is enrolled in the FEA course. An assignment or project, based on the present FEA study of the femur, can also be incorporated in the FEA course offered at our campus.
引用
收藏
页数:3
相关论文
共 50 条
  • [31] A Hybrid Teaching Method for Undergraduate Biomechanics Lab
    Ruth Ochia
    Biomedical Engineering Education, 2021, 1 (1): : 187 - 193
  • [32] The undergraduate medical course
    Eddleston, A
    Booton, P
    MEDICAL EDUCATION, 1997, 31 : 7 - 9
  • [33] UNDERGRADUATE COURSE IN DEATH
    WHITE, DK
    OMEGA-JOURNAL OF DEATH AND DYING, 1970, 1 (03) : 167 - 174
  • [34] Incorporating the Concepts of Fairness and Bias into an Undergraduate Computer Science Course to Promote Fair Automated Decision Systems
    Islam, Sheikh Rabiul
    Russell, Ingrid
    Eberle, William
    Dicheva, Darina
    PROCEEDINGS OF THE 53RD ACM TECHNICAL SYMPOSIUM ON COMPUTER SCIENCE EDUCATION (SIGCSE 2022), VOL 2, 2022, : 1075 - 1075
  • [35] Incorporating biomechanics as a key evaluation metric for organoids
    Chen, Jishizhan
    BIOFABRICATION, 2025, 17 (02)
  • [36] Discussion on the Course of AutoCAD of the Application Undergraduate Course
    Yu, Xifa
    Chen, Cheng
    Wang, Jie
    2015 5TH INTERNATIONAL CONFERENCE ON EDUCATION AND SPORTS EDUCATION (ESE 2015), PT 2, 2015, 46 : 44 - 48
  • [37] Biomechanics in Removable Partial Dentures: A Literature Review of FEA-Based Studies
    Mousa, Mohammed A.
    Abdullah, Johari Yap
    Jamayet, Nafij B.
    El-Anwar, Mohamed I.
    Ganji, Kiran Kumar
    Alam, Mohammad Khursheed
    Husein, Adam
    BIOMED RESEARCH INTERNATIONAL, 2021, 2021
  • [38] An Implementation Method of Incorporating Hysteretic Material Models into Electromagnetic FEA
    Yue, Shuaichao
    Li, Yating
    Chen, Ruiying
    Yang, Ming
    Anderson, Philip
    Li, Yongjian
    2024 IEEE 21ST BIENNIAL CONFERENCE ON ELECTROMAGNETIC FIELD COMPUTATION, CEFC 2024, 2024,
  • [39] EFFECTS OF SPINE SOFT TISSUE STIFFENING ON BIOMECHANICS OF LUMBAR SPINE: A FEA STUDY
    Kiapour, A.
    Kiapour, A. M.
    Goel, V. K.
    Sairyo, K.
    PROCEEDINGS OF THE ASME SUMMER BIOENGINEERING CONFERENCE - 2013, PT A, 2014,
  • [40] INCORPORATING LAW INTO THE UNDERGRADUATE PSYCHOLOGY CURRICULUM
    SWENSON, EV
    TEACHING OF PSYCHOLOGY, 1983, 10 (02) : 119 - 120