Stochastic model for ultraslow diffusion

被引:96
|
作者
Meerschaert, Mark M.
Scheffler, Hans-Peter
机构
[1] Univ Otago, Dept Math & Stat, Dunedin 9001, New Zealand
[2] Univ Siegen, Dept Math, Siegen, Germany
基金
美国国家科学基金会;
关键词
continuous time random walk; slowly varying tails; anomalous diffusion; stable subordinator;
D O I
10.1016/j.spa.2006.01.006
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Ultraslow diffusion is a physical model in which a plume of diffusing particles spreads at a logarithmic rate. Governing partial differential equations for ultraslow diffusion involve fractional time derivatives whose order is distributed over the interval from zero to one. This paper develops the stochastic foundations for ultraslow diffusion based on random walks with a random waiting time between jumps whose probability tail falls off at a logarithmic rate. Scaling limits of these random walks are subordinated random processes whose density functions solve the ultraslow diffusion equation. Along the way, we also show that the density function of any stable subordinator solves an integral equation (5.15) that can be used to efficiently compute this function. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1215 / 1235
页数:21
相关论文
共 50 条
  • [31] An extended stochastic diffusion model for ternary mixtures
    Anders, Denis
    Weinberg, Kerstin
    MECHANICS OF MATERIALS, 2013, 56 : 122 - 130
  • [32] A Stochastic Macroscopic Traffic Model Devoid of Diffusion
    Khoshyaran, Megan M.
    Lebacque, Jean-Patrick
    TRAFFIC AND GRANULAR FLOW '07, 2009, : 139 - +
  • [33] Quantization of the stochastic pump model of Arnold diffusion
    Leitner, DM
    Wolynes, PG
    PHYSICAL REVIEW LETTERS, 1997, 79 (01) : 55 - 58
  • [34] STOCHASTIC HOMOGENIZATION FOR A DIFFUSION-REACTION MODEL
    Bessaih, Hakima
    Efendiev, Yalchin
    Maris, Razvan Florian
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (09) : 5403 - 5429
  • [35] Stochastic Storage Model with Jump-Diffusion
    Vittal P.R.
    Venkateswaran M.
    Reddy P.R.S.
    Journal of the Indian Society for Probability and Statistics, 2017, 18 (1) : 53 - 76
  • [36] Leapfrog Diffusion Model for Stochastic Trajectory Prediction
    Mao, Weibo
    Xu, Chenxin
    Zhu, Qi
    Chen, Siheng
    Wang, Yanfeng
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 5517 - 5526
  • [37] Analysis of Stochastic Transitions in the Distributed Model with Diffusion
    Kolinichenko, A. P.
    Ryashko, L. B.
    PHYSICS, TECHNOLOGIES AND INNOVATION (PTI-2019), 2019, 2174
  • [38] Diffusion entropy method for ultraslow diffusion using inverse Mittag-Leffler function
    Yingjie Liang
    Fractional Calculus and Applied Analysis, 2018, 21 : 104 - 117
  • [39] DIFFUSION ENTROPY METHOD FOR ULTRASLOW DIFFUSION USING INVERSE MITTAG-LEFFLER FUNCTION
    Liang, Yingjie
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (01) : 104 - 117
  • [40] Empirical observations of ultraslow diffusion driven by the fractional dynamics in languages
    Watanabe, Hayafumi
    PHYSICAL REVIEW E, 2018, 98 (01)