Choosability and paintability of the lexicographic product of graphs

被引:0
|
作者
Keszegh, Balazs [1 ]
Zhu, Xuding [2 ]
机构
[1] Alfred Renyi Inst Math, POB 127, H-1364 Budapest, Hungary
[2] Zhejiang Normal Univ, Dept Math, Jinhua, Zhejiang, Peoples R China
关键词
List coloring; Choice number; On-line choosability; Paintability; Game coloring; Lexicographic product;
D O I
10.1016/j.dam.2017.02.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the choice number and paint number of the lexicographic product of graphs. We prove that if G has maximum degree 4, then for any graph H on n vertices ch(G[H]) <= (4 triangle + 2)(ch(H) + log(2) n) and X-p(G[H]) <= (4 triangle + 2)(X-P(1-1) + log(2) n). (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:84 / 90
页数:7
相关论文
共 50 条
  • [41] On the fractional chromatic number and the lexicographic product of graphs
    Klavzar, S
    DISCRETE MATHEMATICS, 1998, 185 (1-3) : 259 - 263
  • [42] Some diameter notions in lexicographic product of graphs
    Chithra, M. R.
    Menon, Manju K.
    Vijayakumar, A.
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2018, 6 (02) : 258 - 268
  • [43] On the b-Continuity of the Lexicographic Product of Graphs
    Cláudia Linhares Sales
    Leonardo Sampaio
    Ana Silva
    Graphs and Combinatorics, 2017, 33 : 1165 - 1180
  • [44] Star-extremal graphs and the lexicographic product
    Département d'IRO, Université de Montréal, Succursale Centre-Ville, Montreal, Que. H3C 3J7, Canada
    不详
    Discrete Math, 1-3 (147-156):
  • [45] INDEPENDENT SEMITOTAL DOMINATION IN THE LEXICOGRAPHIC PRODUCT OF GRAPHS
    Susada, Bryan L.
    Eballe, Rolito G.
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2023, 39 (02): : 237 - 244
  • [46] Toll number of the Cartesian and the lexicographic product of graphs
    Gologranc, Tanja
    Repolusk, Polona
    DISCRETE MATHEMATICS, 2017, 340 (10) : 2488 - 2498
  • [47] Total Roman domination in the lexicographic product of graphs
    Campanelli, Nicolas
    Kuziak, Dorota
    DISCRETE APPLIED MATHEMATICS, 2019, 263 : 88 - 95
  • [48] Radio Labelings of Lexicographic Product of Some Graphs
    Aasi, Muhammad Shahbaz
    Asif, Muhammad
    Iqbal, Tanveer
    Ibrahim, Muhammad
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [49] Choosability, edge choosability, and total choosability of outerplane graphs
    Wang, WF
    Lih, KW
    EUROPEAN JOURNAL OF COMBINATORICS, 2001, 22 (01) : 71 - 78
  • [50] ON THE CHROMATIC NUMBER OF THE LEXICOGRAPHIC PRODUCT AND THE CARTESIAN SUM OF GRAPHS
    CIZEK, N
    KLAVZAR, S
    DISCRETE MATHEMATICS, 1994, 134 (1-3) : 17 - 24