Choosability and paintability of the lexicographic product of graphs

被引:0
|
作者
Keszegh, Balazs [1 ]
Zhu, Xuding [2 ]
机构
[1] Alfred Renyi Inst Math, POB 127, H-1364 Budapest, Hungary
[2] Zhejiang Normal Univ, Dept Math, Jinhua, Zhejiang, Peoples R China
关键词
List coloring; Choice number; On-line choosability; Paintability; Game coloring; Lexicographic product;
D O I
10.1016/j.dam.2017.02.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the choice number and paint number of the lexicographic product of graphs. We prove that if G has maximum degree 4, then for any graph H on n vertices ch(G[H]) <= (4 triangle + 2)(ch(H) + log(2) n) and X-p(G[H]) <= (4 triangle + 2)(X-P(1-1) + log(2) n). (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:84 / 90
页数:7
相关论文
共 50 条
  • [21] Gromov hyperbolicity in lexicographic product graphs
    Carballosa, Walter
    De la Cruz, Amauris
    Rodriguez, Jose M.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2019, 129 (01):
  • [22] On indicated coloring of lexicographic product of graphs
    Francis, P.
    Raj, S. Francis
    Gokulnath, M.
    DISCRETE APPLIED MATHEMATICS, 2022, 319 : 576 - 582
  • [23] The geodetic number of the lexicographic product of graphs
    Bresar, Bostjan
    Sumenjak, Tadeja Kraner
    Tepeh, Aleksandra
    DISCRETE MATHEMATICS, 2011, 311 (16) : 1693 - 1698
  • [24] Identifying codes of lexicographic product of graphs
    Feng, Min
    Xu, Min
    Wang, Kaishun
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (04):
  • [25] On the Roman domination in the lexicographic product of graphs
    Sumenjak, Tadeja Kraner
    Pavlic, Polona
    Tepeh, Aleksandra
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (13-14) : 2030 - 2036
  • [26] THE BASIS NUMBER OF THE LEXICOGRAPHIC PRODUCT OF GRAPHS
    ALI, AA
    MAROUGI, GT
    ARS COMBINATORIA, 1993, 36 : 271 - 282
  • [27] Rainbow domination in the lexicographic product of graphs
    Sumenjak, Tadeja Kraner
    Rall, Douglas F.
    Tepeh, Aleksandra
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (13-14) : 2133 - 2141
  • [28] Geodetic numbers of tensor product and lexicographic product of graphs
    Chandrasekar, K. Raja
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2025, 22 (01) : 106 - 114
  • [29] SECURE DOMINATING SETS IN THE LEXICOGRAPHIC PRODUCT OF GRAPHS
    Canoy, Sergio R., Jr.
    Canoy, Seanne Abigail E.
    Cruzate, Marlon F.
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2019, 20 (01): : 13 - 24
  • [30] Domination polynomial of lexicographic product of specific graphs
    Alikhani, Saeid
    Jahari, Somayeh
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2018, 39 (05): : 1019 - 1028