DISTANCES BETWEEN STATIONARY DISTRIBUTIONS OF DIFFUSIONS AND SOLVABILITY OF NONLINEAR FOKKER-PLANCK-KOLMOGOROV EQUATIONS

被引:6
|
作者
Bogachev, V. I. [1 ,2 ,3 ]
Kirillov, A. I. [4 ]
Shaposhnikov, S. V. [1 ,2 ,3 ]
机构
[1] Moscow MV Lomonosov State Univ, Fac Mech & Math, Moscow, Russia
[2] St Tikhons Orthodox Univ, Moscow, Russia
[3] Natl Res Univ, Higher Sch Econ, Moscow, Russia
[4] Russian Fdn Basic Res, Moscow, Russia
基金
俄罗斯科学基金会;
关键词
stationary Fokker-Planck-Kolmogorov equation; total variation distance; Kantorovich metric; Prohorov metric; nonlinear Fokker-Planck-Kolmogorov equation; ELLIPTIC-EQUATIONS; INVARIANT-MEASURES; TRANSITION-PROBABILITIES; KANTOROVICH; REGULARITY; DENSITIES;
D O I
10.1137/S0040585X97T988460
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper is concerned with investigation of stationary distributions of diffusion processes. We obtain estimates for the Kantorovich, Prohorov, and total variation distances between stationary distributions of diffusions with different diffusion matrices and different drift coefficients. Applications are given to nonlinear stationary Fokker-Planck-Kolmogorov equations, for which new conditions for the existence and uniqueness of probability solutions are found; moreover, these conditions are optimal in a sense.
引用
收藏
页码:12 / 34
页数:23
相关论文
共 50 条
  • [21] On Positive and Probability Solutions to the Stationary Fokker-Planck-Kolmogorov Equation
    Bogachev, V. I.
    Roeckner, M.
    Shaposhnikov, S. V.
    DOKLADY MATHEMATICS, 2012, 85 (03) : 350 - 354
  • [22] FOKKER-PLANCK-KOLMOGOROV EQUATION
    SMITH, JR
    MATRIX AND TENSOR QUARTERLY, 1975, 25 (04): : 150 - &
  • [23] Log-Sobolev-type inequalities for solutions to stationary Fokker-Planck-Kolmogorov equations
    Bogachev, V. I.
    Shaposhnikov, A. V.
    Shaposhnikov, S. V.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (05)
  • [24] Fokker-Planck-Kolmogorov equations with a potential term on a domain
    O. A. Manita
    S. V. Shaposhnikov
    Doklady Mathematics, 2015, 91 : 26 - 29
  • [25] Integrability and Continuity of Solutions to Fokker-Planck-Kolmogorov Equations
    Bogachev, V. I.
    Shaposhnikov, S. V.
    DOKLADY MATHEMATICS, 2017, 96 (03) : 583 - 586
  • [26] Linearization and a superposition principle for deterministic and stochastic nonlinear Fokker-Planck-Kolmogorov equations
    Rehmeier, Marco
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2023, 24 (03) : 1705 - 1739
  • [27] Convergence to Stationary Measures in Nonlinear Fokker–Planck–Kolmogorov Equations
    V. I. Bogachev
    M. Röckner
    S. V. Shaposhnikov
    Doklady Mathematics, 2018, 98 : 452 - 457
  • [28] SOLUTION OF FOKKER-PLANCK-KOLMOGOROV EQUATIONS BY SERIES METHOD
    KRASOVSK.AA
    DOKLADY AKADEMII NAUK SSSR, 1972, 205 (03): : 550 - &
  • [29] FOKKER-PLANCK-KOLMOGOROV EQUATION
    SMITH, JR
    MATRIX AND TENSOR QUARTERLY, 1975, 26 (02): : 61 - 62
  • [30] Fokker-Planck-Kolmogorov Equations with a Potential Term on a Domain
    Manita, O. A.
    Shaposhnikov, S. V.
    DOKLADY MATHEMATICS, 2015, 91 (01) : 26 - 29