Linearization and a superposition principle for deterministic and stochastic nonlinear Fokker-Planck-Kolmogorov equations

被引:0
|
作者
Rehmeier, Marco [1 ]
机构
[1] Bielefeld Univ, Fac Math, Univ str 25, D-33615 Bielefeld, Germany
关键词
UNIQUENESS; SDES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a superposition principle for nonlinear Fokker-Planck-Kolmogorov equations on Euclidean spaces and their corresponding linearized first-order continuity equation over the space of Borel (sub-)probability mea-sures. As a consequence, we obtain equivalence of existence and uniqueness results for these equations. Moreover, we prove an analogous result for stochasti-cally perturbed Fokker-Planck-Kolmogorov equations. To do so, we particularly show that such stochastic equations for measures are, similarly to the determinis-tic case, intrinsically related to linearized second-order equations on the space of Borel (sub-)probability measures.
引用
收藏
页码:1705 / 1739
页数:35
相关论文
共 50 条
  • [1] On the Superposition Principle for Fokker-Planck-Kolmogorov Equations
    Bogachev, V. I.
    Roeckner, M.
    Shaposhnikov, S. V.
    DOKLADY MATHEMATICS, 2019, 100 (01) : 363 - 366
  • [2] Superposition Principle for the Fokker-Planck-Kolmogorov Equations with Unbounded Coefficients
    Krasovitskii, T. I.
    Shaposhnikov, S. V.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2022, 56 (04) : 282 - 298
  • [3] On the Superposition Principle for Fokker–Planck–Kolmogorov Equations
    V. I. Bogachev
    M. Röckner
    S. V. Shaposhnikov
    Doklady Mathematics, 2019, 100 : 363 - 366
  • [4] Nonlinear Fokker-Planck-Kolmogorov Equations for Measures
    Shaposhnikov, Stanislav, V
    STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS AND RELATED FIELDS: IN HONOR OF MICHAEL ROCKNER, SPDERF, 2018, 229 : 367 - 379
  • [5] A restricted superposition principle for (non-)linear Fokker-Planck-Kolmogorov equations on Hilbert spaces
    Dieckmann, Martin
    JOURNAL OF EVOLUTION EQUATIONS, 2022, 22 (02)
  • [6] On the Ambrosio-Figalli-Trevisan Superposition Principle for Probability Solutions to Fokker-Planck-Kolmogorov Equations
    Bogachev, Vladimir I.
    Roeckner, Michael
    Shaposhnikov, Stanislav V.
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2021, 33 (02) : 715 - 739
  • [7] Superposition principle for non-local Fokker-Planck-Kolmogorov operators
    Roeckner, Michael
    Xie, Longjie
    Zhang, Xicheng
    PROBABILITY THEORY AND RELATED FIELDS, 2020, 178 (3-4) : 699 - 733
  • [9] Convergence to Stationary Measures in Nonlinear Fokker-Planck-Kolmogorov Equations
    Bogachev, V. I.
    Roeckner, M.
    Shaposhnikov, S. V.
    DOKLADY MATHEMATICS, 2018, 98 (02) : 452 - 457
  • [10] Fokker-Planck-Kolmogorov Equations with a Parameter
    Bogachev, V. I.
    Shaposhnikov, S. V.
    DOKLADY MATHEMATICS, 2023, 108 (02) : 357 - 362