Linearization and a superposition principle for deterministic and stochastic nonlinear Fokker-Planck-Kolmogorov equations

被引:0
|
作者
Rehmeier, Marco [1 ]
机构
[1] Bielefeld Univ, Fac Math, Univ str 25, D-33615 Bielefeld, Germany
关键词
UNIQUENESS; SDES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a superposition principle for nonlinear Fokker-Planck-Kolmogorov equations on Euclidean spaces and their corresponding linearized first-order continuity equation over the space of Borel (sub-)probability mea-sures. As a consequence, we obtain equivalence of existence and uniqueness results for these equations. Moreover, we prove an analogous result for stochasti-cally perturbed Fokker-Planck-Kolmogorov equations. To do so, we particularly show that such stochastic equations for measures are, similarly to the determinis-tic case, intrinsically related to linearized second-order equations on the space of Borel (sub-)probability measures.
引用
收藏
页码:1705 / 1739
页数:35
相关论文
共 50 条
  • [31] Convergence in variation of solutions of nonlinear Fokker-Planck-Kolmogorov equations to stationary measures
    Bogachev, Vladimir, I
    Roeckner, Michael
    Shaposhnikov, Stanislav, V
    JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 276 (12) : 3681 - 3713
  • [32] Distances between transition probabilities of diffusions and applications to nonlinear Fokker-Planck-Kolmogorov equations
    Bogachev, V. I.
    Roeckner, M.
    Shaposhnikov, S. V.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (05) : 1262 - 1300
  • [33] Estimates for Solutions to Fokker-Planck-Kolmogorov Equations with Integrable Drifts
    Bogachev, V. I.
    Shaposhnikov, A. V.
    Shaposhnikov, S. V.
    DOKLADY MATHEMATICS, 2018, 98 (03) : 559 - 563
  • [34] On Sobolev Classes Containing Solutions to Fokker-Planck-Kolmogorov Equations
    Bogachev, V. I.
    Popova, S. N.
    Shaposhnikov, S. V.
    DOKLADY MATHEMATICS, 2018, 98 (02) : 498 - 501
  • [35] Uniqueness of probability solutions to nonlinear Fokker-Planck-Kolmogorov equation
    O. A. Manita
    M. S. Romanov
    S. V. Shaposhnikov
    Doklady Mathematics, 2015, 91 : 142 - 146
  • [36] Fokker-Planck-Kolmogorov equations with a partially degenerate diffusion matrix
    Manita, O. A.
    Romanov, M. S.
    Shaposhnikov, S. V.
    DOKLADY MATHEMATICS, 2017, 96 (01) : 384 - 388
  • [37] DISTANCES BETWEEN STATIONARY DISTRIBUTIONS OF DIFFUSIONS AND SOLVABILITY OF NONLINEAR FOKKER-PLANCK-KOLMOGOROV EQUATIONS
    Bogachev, V. I.
    Kirillov, A. I.
    Shaposhnikov, S. V.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2018, 62 (01) : 12 - 34
  • [38] Fractional Fokker-Planck-Kolmogorov equations with Holder continuous drift
    Tian, Rongrong
    Wei, Jinlong
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2024, 27 (05) : 2456 - 2481
  • [39] On the Ambrosio–Figalli–Trevisan Superposition Principle for Probability Solutions to Fokker–Planck–Kolmogorov Equations
    Vladimir I. Bogachev
    Michael Röckner
    Stanislav V. Shaposhnikov
    Journal of Dynamics and Differential Equations, 2021, 33 : 715 - 739
  • [40] Uniqueness of probability solutions to nonlinear Fokker-Planck-Kolmogorov equation
    Manita, O. A.
    Romanov, M. S.
    Shaposhnikov, S. V.
    DOKLADY MATHEMATICS, 2015, 91 (02) : 142 - 146