Accelerating silicon photonic parameter extraction using artificial neural networks

被引:8
|
作者
Hammond, Alec M. [1 ]
Potokar, Easton [1 ]
Camacho, Ryan M. [1 ]
机构
[1] Brigham Young Univ, Elect & Comp Engn Dept, Provo, UT 84604 USA
来源
OSA CONTINUUM | 2019年 / 2卷 / 06期
基金
加拿大自然科学与工程研究理事会;
关键词
BRAGG GRATINGS; FABRICATION;
D O I
10.1364/OSAC.2.001964
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a novel silicon photonic parameter extraction tool that uses artificial neural networks. While other parameter extraction methods are restricted to relatively simple devices whose responses are easily modeled by analytic transfer functions, this method is capable of extracting parameters for any device with a discrete number of design parameters. To validate the method, we design and fabricate integrated chirped Bragg gratings. We then estimate the actual device parameters by iteratively fitting the simultaneously measured group delay and reflection profiles to the artificial neural network output. The method is fast, accurate, and capable of modeling the complicated chirping and index contrast. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:1964 / 1973
页数:10
相关论文
共 50 条
  • [41] Simultaneous parameter identification of a heterogeneous aquifer system using artificial neural networks
    Karahan, Halil
    Ayvaz, M. Tamer
    HYDROGEOLOGY JOURNAL, 2008, 16 (05) : 817 - 827
  • [42] Modeling and parameter optimization of rough rice drying using artificial neural networks
    Zhang, QH
    Yang, SX
    PROCEEDING OF THE 2002 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-3, 2002, : 794 - 799
  • [43] A diagnosis approach for parameter deviations in linear system using artificial neural networks
    Manikandan, V.
    Devarajan, N.
    Ramakrishnan, K.
    2006 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY, VOLS 1-6, 2006, : 915 - +
  • [44] Parameter Identification of Cutting Forces in Crankshaft Grinding Using Artificial Neural Networks
    Pavlenko, Ivan
    Saga, Milan
    Kuric, Ivan
    Kotliar, Alexey
    Basova, Yevheniia
    Trojanowska, Justyna
    Ivanov, Vitalii
    MATERIALS, 2020, 13 (23) : 1 - 12
  • [45] On the Impact of Uncertainties in Silicon-Photonic Neural Networks
    Banerjee, Sanmitra
    Nikdast, Mahdi
    Chakrabarty, Krishnendu
    IEEE DESIGN & TEST, 2023, 40 (02) : 82 - 89
  • [46] Photonic Neural Networks Based on Integrated Silicon Microresonators
    Biasi, Stefano
    Donati, Giovanni
    Lugnan, Alessio
    Mancinelli, Mattia
    Staffoli, Emiliano
    Pavesi, Lorenzo
    INTELLIGENT COMPUTING, 2024, 3
  • [47] Assessment of a system for gait parameter extraction and individual feature classification using artificial neural networks and a low-cost accelerometer
    Lopez-Tapia, Andrea
    Reyes-Barranca, Mario Alfredo
    Abarca-Jimenez, Griselda Stephany
    Sanchez-Marquez, Luis
    Flores-Nava, Luis Martin
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (01)
  • [48] Accelerating Graph Neural Networks using GPU
    Nayak, Niharika
    Jatala, Vishwesh
    2022 IEEE 29TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING, DATA AND ANALYTICS WORKSHOP, HIPCW, 2022, : 73 - 73
  • [49] Accelerating Deep Neural Networks Using FPGA
    Adel, Esraa
    Magdy, Rana
    Mohamed, Sara
    Mamdouh, Mona
    El Mandouh, Eman
    Mostafa, Hassan
    2018 30TH INTERNATIONAL CONFERENCE ON MICROELECTRONICS (ICM), 2018, : 176 - 179
  • [50] Rule extraction: Using neural networks or for neural networks?
    Zhi-Hua Zhou
    Journal of Computer Science and Technology, 2004, 19 : 249 - 253