Accelerating silicon photonic parameter extraction using artificial neural networks

被引:8
|
作者
Hammond, Alec M. [1 ]
Potokar, Easton [1 ]
Camacho, Ryan M. [1 ]
机构
[1] Brigham Young Univ, Elect & Comp Engn Dept, Provo, UT 84604 USA
来源
OSA CONTINUUM | 2019年 / 2卷 / 06期
基金
加拿大自然科学与工程研究理事会;
关键词
BRAGG GRATINGS; FABRICATION;
D O I
10.1364/OSAC.2.001964
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a novel silicon photonic parameter extraction tool that uses artificial neural networks. While other parameter extraction methods are restricted to relatively simple devices whose responses are easily modeled by analytic transfer functions, this method is capable of extracting parameters for any device with a discrete number of design parameters. To validate the method, we design and fabricate integrated chirped Bragg gratings. We then estimate the actual device parameters by iteratively fitting the simultaneously measured group delay and reflection profiles to the artificial neural network output. The method is fast, accurate, and capable of modeling the complicated chirping and index contrast. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:1964 / 1973
页数:10
相关论文
共 50 条
  • [21] Quantifying Power in Silicon Photonic Neural Networks
    Tait, Alexander N.
    PHYSICAL REVIEW APPLIED, 2022, 17 (05)
  • [22] Induction Motor Parameter Determination Technique using Artificial Neural Networks
    Karanayil, Baburaj
    Rahman, Muhammed Fazlur
    Grantham, Colin
    ICEMS 2008: PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS, VOLS 1- 8, 2008, : 793 - 798
  • [23] Artificial neural networks for parameter estimation in geophysics
    Calderón-Macías, C
    Sen, MK
    Stoffa, PL
    GEOPHYSICAL PROSPECTING, 2000, 48 (01) : 21 - 47
  • [24] Predicting behavior of photonic crystal fiber lasers using artificial neural networks
    Mezzi, Ridha
    Bahloul, Faouzi
    Karar, Abdullah S.
    Ghandour, Raymond
    Salhi, Mohamed
    OPTICS COMMUNICATIONS, 2023, 542
  • [25] Fully automatic alpha matte extraction using artificial neural networks
    Roberto Rosas-Romero
    Omar Lopez-Rincon
    Oleg Starostenko
    Neural Computing and Applications, 2020, 32 : 6843 - 6855
  • [26] Feature Extraction using Coordinate Logic Filters and Artificial Neural Networks
    Quintanilla-Dominguez, J.
    Sanchez-Garcia, M.
    Gozalez-Romo, M.
    Vega-Corona, A.
    Andina, D.
    2009 7TH IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS, VOLS 1 AND 2, 2009, : 644 - +
  • [27] Modeling the Biocatalytic Method of Lipid Extraction Using Artificial Neural Networks
    Shafrai, Anton V.
    Prosekov, Alexander Yu.
    Vechtomova, Elena A.
    INFORMATION, 2023, 14 (08)
  • [28] Extraction of Hard Exudates using Functional Link Artificial Neural Networks
    Bhaskar, K. Udaya
    Kumar, E. Pranay
    2015 IEEE INTERNATIONAL ADVANCE COMPUTING CONFERENCE (IACC), 2015, : 420 - 424
  • [29] Evaluation of the feature extraction method for the face using an artificial neural networks
    Hoguro, M
    Umezaki, T
    Sugai, M
    CCCT 2003, VOL 1, PROCEEDINGS: COMPUTING/INFORMATION SYSTEMS AND TECHNOLOGIES, 2003, : 210 - 215
  • [30] Automated brain extraction of multisequence MRI using artificial neural networks
    Isensee, Fabian
    Schell, Marianne
    Pflueger, Irada
    Brugnara, Gianluca
    Bonekamp, David
    Neuberger, Ulf
    Wick, Antje
    Schlemmer, Heinz-Peter
    Heiland, Sabine
    Wick, Wolfgang
    Bendszus, Martin
    Maier-Hein, Klaus H.
    Kickingereder, Philipp
    HUMAN BRAIN MAPPING, 2019, 40 (17) : 4952 - 4964