Synchronization schemes for two dimensional discrete systems

被引:4
|
作者
Ambika, G. [1 ]
Ambika, K.
机构
[1] Indian Inst Sci Educ & Res, Pune, Maharashtra, India
[2] Maharajas Coll, Dept Phys, Cochin 682011, Kerala, India
关键词
D O I
10.1088/0031-8949/74/5/003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this study, we consider two models of two dimensional (2D) discrete systems subjected to three different types of coupling and analyse systematically the performance of each in realizing synchronized states. We find that linear coupling (CS1) effectively introduces control of chaos along with synchronization, while synchronized chaotic states are possible with an additive parametric coupling (CS3) scheme both being equally relevant for specific applications. The basin leading to synchronization in the initial value plane and the choice of parameter values for synchronization in the parameter plane are isolated in each case.
引用
收藏
页码:510 / 518
页数:9
相关论文
共 50 条
  • [1] EXPERIMENTAL INVESTIGATION OF DISCRETE SYNCHRONIZATION SCHEMES
    KNYAZEV, RA
    SHAKHTAR.BI
    RADIO ENGINEERING AND ELECTRONIC PHYSICS-USSR, 1969, 14 (10): : 1576 - &
  • [2] Sensitivity of Multicarrier Two-Dimensional Spreading Schemes to Synchronization Errors
    Youssef Nasser
    Mathieu des Noes
    Laurent Ros
    Geneviève Jourdain
    EURASIP Journal on Wireless Communications and Networking, 2008
  • [3] Sensitivity of multicarrier two-dimensional spreading schemes to synchronization errors
    Nasser, Youssef
    des Noes, Mathieu
    Ros, Laurent
    Jourdain, Genevieve
    EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, 2008, 2008 (1)
  • [4] Synchronization between two discrete chaotic systems for secure communications
    Fataf, N. A. A.
    Mukherjee, S.
    Said, M. R. M.
    Rauf, U. F. A.
    Hina, A. D.
    Banerjee, S.
    2016 IEEE SIXTH INTERNATIONAL CONFERENCE ON COMMUNICATIONS AND ELECTRONICS (ICCE), 2016, : 477 - 481
  • [5] Generalized synchronization of two bidirectionally coupled discrete dynamical systems
    Yuan, Zhiling
    Xu, Zhenyuan
    Guo, Liuxiao
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (02) : 992 - 1002
  • [6] Observer of two-dimensional discrete systems
    Yang, Chengwu
    Chen, Xueru
    Zidonghua Xuebao/Acta Automatica Sinica, 1991, 17 (05):
  • [7] Stability of two-dimensional discrete systems
    Bose, T
    Xu, GF
    ISCAS '99: PROCEEDINGS OF THE 1999 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL 3: ANALOG AND DIGITAL SIGNAL PROCESSING, 1999, : 351 - 354
  • [8] PROJECTIVE SYNCHRONIZATION OF TWO DIFFERENT DIMENSIONAL NONLINEAR SYSTEMS
    Nian, Fuzhong
    Wang, Xingyuan
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2013, 27 (21):
  • [9] Synchronization and control of two-dimensional chaotic systems
    Yao, Hong
    Xu, Jianxue
    Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University, 1999, 17 (04): : 578 - 582
  • [10] On Synchronization and Inverse Synchronization of Some Different Dimensional Discrete-Time Chaotic Dynamical Systems
    Ouannas, Adel
    JOURNAL OF ADVANCED MATHEMATICS AND APPLICATIONS, 2015, 4 (02) : 182 - 188