Independent transversals in r-partite graphs

被引:30
|
作者
Yuster, R [1 ]
机构
[1] TEL AVIV UNIV,DEPT MATH,RAYMOND & BEVERLY SACKLER FAC EXACT SCI,IL-69978 TEL AVIV,ISRAEL
关键词
D O I
10.1016/S0012-365X(96)00300-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G(r,n) denote the set of all r-partite graphs consisting of n vertices in each partite class. An independent transversal of G is an element of G(r,n) is an independent set consisting of exactly one vertex from each vertex class. Let Delta(r,n) be the maximal integer such that every G is an element of G(r,n) with maximal degree less than Delta(r,n) contains an independent transversal. Let C-r = lim(n-->infinity)Delta(r,n)/n. We establish the following upper and lower bounds on C-r, provided r > 2: 2(right perpendicular log rleft perpendicular?(-1))/2(right perpendicular rleft perpendicular)-1 greater than or equal to C-r greater than or equal to max {1/2e,1/2(inverted right perpendicular log(r/3)inverted left perpendicular), 1/3.2(inverted right perpendicular rinverted left perpendicular-3)}. For all r > 3, both upper and lower bounds improve upon previously known bounds of Bollobas, Erdos and Szemeredi. In particular, we obtain that C-4 = 2/3, and that lim(r-->infinity) C-r greater than or equal to 1/(2e), where the last bound is a consequence of a lemma of Alon and Spencer. This solves two open problems of Bollobas, Erdos and Szemeredi.
引用
收藏
页码:255 / 261
页数:7
相关论文
共 50 条
  • [41] COHEN-MACAULAY r-PARTITE GRAPHS WITH MINIMAL CLIQUE COVER
    Madadi, A.
    Zaare-Nahandi, R.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2014, 40 (03): : 609 - 617
  • [42] DECOMPOSITION OF R-PARTITE GRAPHS INTO EDGE-DISJOINT HAMILTON CIRCUITS
    LASKAR, R
    AUERBACH, B
    DISCRETE MATHEMATICS, 1976, 14 (03) : 265 - 268
  • [43] Turan numbers of vertex-disjoint cliques in r-partite graphs
    De Silva, Jessica
    Heysse, Kristin
    Kapilow, Adam
    Schenfisch, Anna
    Young, Michael
    DISCRETE MATHEMATICS, 2018, 341 (02) : 492 - 496
  • [44] The t-Pebbling Conjecture on Products of Complete r-Partite Graphs
    Lourdusamy, A.
    Tharani, A. Punitha
    ARS COMBINATORIA, 2011, 102 : 201 - 212
  • [45] Graphs with many r-cliques have large complete r-partite subgraphs
    Nikiforov, Vladimir
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2008, 40 : 23 - 25
  • [46] Vertex-coloring edge-weighting of complete r-partite graphs
    Li, Yunyun
    Xu, Changqing
    UTILITAS MATHEMATICA, 2013, 92 : 187 - 191
  • [47] Cores of random r-partite hypergraphs
    Botelho, Fabiano C.
    Wormald, Nicholas
    Ziviani, Nivio
    INFORMATION PROCESSING LETTERS, 2012, 112 (8-9) : 314 - 319
  • [48] Equitable total coloring of complete r-partite p-balanced graphs
    da Silva, A. G.
    Dantas, S.
    Sasaki, D.
    DISCRETE APPLIED MATHEMATICS, 2019, 261 : 123 - 135
  • [49] Coverings and matchings in r-partite hypergraphs
    Altner, Douglas S.
    Brooks, J. Paul
    NETWORKS, 2012, 59 (04) : 400 - 410
  • [50] CHROMATIC POLYNOMIAL OF A COMPLETE R-PARTITE GRAPH
    LASKAR, R
    HARE, WR
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (07): : A655 - A655