Independent transversals in r-partite graphs

被引:30
|
作者
Yuster, R [1 ]
机构
[1] TEL AVIV UNIV,DEPT MATH,RAYMOND & BEVERLY SACKLER FAC EXACT SCI,IL-69978 TEL AVIV,ISRAEL
关键词
D O I
10.1016/S0012-365X(96)00300-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G(r,n) denote the set of all r-partite graphs consisting of n vertices in each partite class. An independent transversal of G is an element of G(r,n) is an independent set consisting of exactly one vertex from each vertex class. Let Delta(r,n) be the maximal integer such that every G is an element of G(r,n) with maximal degree less than Delta(r,n) contains an independent transversal. Let C-r = lim(n-->infinity)Delta(r,n)/n. We establish the following upper and lower bounds on C-r, provided r > 2: 2(right perpendicular log rleft perpendicular?(-1))/2(right perpendicular rleft perpendicular)-1 greater than or equal to C-r greater than or equal to max {1/2e,1/2(inverted right perpendicular log(r/3)inverted left perpendicular), 1/3.2(inverted right perpendicular rinverted left perpendicular-3)}. For all r > 3, both upper and lower bounds improve upon previously known bounds of Bollobas, Erdos and Szemeredi. In particular, we obtain that C-4 = 2/3, and that lim(r-->infinity) C-r greater than or equal to 1/(2e), where the last bound is a consequence of a lemma of Alon and Spencer. This solves two open problems of Bollobas, Erdos and Szemeredi.
引用
收藏
页码:255 / 261
页数:7
相关论文
共 50 条
  • [31] Complete r-partite Graphs Determined by their Domination Polynomial
    Anthony, Barbara M.
    Picollelli, Michael E.
    GRAPHS AND COMBINATORICS, 2015, 31 (06) : 1993 - 2002
  • [32] QLS-Integrality of Complete r-Partite Graphs
    Pokorny, Milan
    FILOMAT, 2015, 29 (05) : 1043 - 1051
  • [33] SOME COLORING NUMBERS FOR COMPLETE R-PARTITE GRAPHS
    AUERBACH, B
    LASKAR, R
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1976, 21 (02) : 169 - 170
  • [34] Factors of r-partite graphs and bounds for the Strong Chromatic Number
    Johansson, Anders
    Johansson, Robert
    Markstrom, Klas
    ARS COMBINATORIA, 2010, 95 : 277 - 287
  • [35] Sharp bounds for decompositions of graphs into complete r-partite subgraphs
    Gregory, DA
    VanderMeulen, KN
    JOURNAL OF GRAPH THEORY, 1996, 21 (04) : 393 - 400
  • [36] Covering Complete r-Graphs with Spanning Complete r-Partite r-Graphs
    Cioaba, Sebastian M.
    Kuendgen, Andre
    Timmons, Craig M.
    Vysotsky, Vladislav V.
    COMBINATORICS PROBABILITY & COMPUTING, 2011, 20 (04): : 519 - 527
  • [37] Vertex Decomposable Property of Graphs Whose Complements Are r-Partite
    Saba YASMEEN
    Tongsuo WU
    JournalofMathematicalResearchwithApplications, 2021, 41 (01) : 14 - 24
  • [38] R-PARTITE SELF-COMPLEMENTARY GRAPHS-DIAMETERS
    GANGOPADHYAY, T
    HEBBARE, SPR
    DISCRETE MATHEMATICS, 1980, 32 (03) : 245 - 255
  • [39] Making Kr+1-free graphs r-partite
    Balogh, Jozsef
    Clemen, Felix Christian
    Lavrov, Mikhail
    Lidicky, Bernard
    Pfender, Florian
    COMBINATORICS PROBABILITY & COMPUTING, 2021, 30 (04): : 609 - 618
  • [40] DECOMPOSITION OF THE COMPLETE R-GRAPH INTO COMPLETE R-PARTITE R-GRAPHS
    ALON, N
    GRAPHS AND COMBINATORICS, 1986, 2 (02) : 95 - 100