Independent transversals in r-partite graphs

被引:30
|
作者
Yuster, R [1 ]
机构
[1] TEL AVIV UNIV,DEPT MATH,RAYMOND & BEVERLY SACKLER FAC EXACT SCI,IL-69978 TEL AVIV,ISRAEL
关键词
D O I
10.1016/S0012-365X(96)00300-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G(r,n) denote the set of all r-partite graphs consisting of n vertices in each partite class. An independent transversal of G is an element of G(r,n) is an independent set consisting of exactly one vertex from each vertex class. Let Delta(r,n) be the maximal integer such that every G is an element of G(r,n) with maximal degree less than Delta(r,n) contains an independent transversal. Let C-r = lim(n-->infinity)Delta(r,n)/n. We establish the following upper and lower bounds on C-r, provided r > 2: 2(right perpendicular log rleft perpendicular?(-1))/2(right perpendicular rleft perpendicular)-1 greater than or equal to C-r greater than or equal to max {1/2e,1/2(inverted right perpendicular log(r/3)inverted left perpendicular), 1/3.2(inverted right perpendicular rinverted left perpendicular-3)}. For all r > 3, both upper and lower bounds improve upon previously known bounds of Bollobas, Erdos and Szemeredi. In particular, we obtain that C-4 = 2/3, and that lim(r-->infinity) C-r greater than or equal to 1/(2e), where the last bound is a consequence of a lemma of Alon and Spencer. This solves two open problems of Bollobas, Erdos and Szemeredi.
引用
收藏
页码:255 / 261
页数:7
相关论文
共 50 条
  • [1] UNMIXED r-PARTITE GRAPHS
    Jafarpour-Golzari, R.
    Zaare-Nahandi, R.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2017, 43 (03): : 781 - 787
  • [2] Independent arcs of acyclic orientations of complete r-partite graphs
    Chang, Gerard J.
    Lin, Chen-Ying
    Tong, Li-Da
    DISCRETE MATHEMATICS, 2009, 309 (13) : 4280 - 4286
  • [3] On the line graphs of the complete r-partite graphs
    Zornig, P
    DISCRETE MATHEMATICS, 1997, 171 (1-3) : 277 - 282
  • [4] R-PARTITE GRAPHS - PRELIMINARY REPORT
    LASKAR, R
    AUERBACH, B
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (07): : A649 - A649
  • [5] Integral complete r-partite graphs
    Wang, LG
    Li, XL
    Hoede, C
    DISCRETE MATHEMATICS, 2004, 283 (1-3) : 231 - 241
  • [6] Rainbow matchings in r-partite r-graphs
    Aharoni, Ron
    Berger, Eli
    ELECTRONIC JOURNAL OF COMBINATORICS, 2009, 16 (01):
  • [7] Perfect matchings in r-partite r-graphs
    Aharoni, Ron
    Georgakopoulos, Agelos
    Spruessel, Philipp
    EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (01) : 39 - 42
  • [8] Seidel Integral Complete r-Partite Graphs
    Wang, Ligong
    Zhao, Guopeng
    Li, Ke
    GRAPHS AND COMBINATORICS, 2014, 30 (02) : 479 - 493
  • [9] Competition numbers of complete r-partite graphs
    Li, Bo-Jr
    Chang, Gerard J.
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (15) : 2271 - 2276
  • [10] Equitable Coloring of Complete r-partite Graphs
    WANG Xiu-mei(Department of Mathematics
    数学季刊, 2004, (04) : 412 - 415