Robust sparse precision matrix estimation for high-dimensional compositional data

被引:2
|
作者
Liang, Wanfeng [1 ]
Wu, Yue [1 ]
Ma, Xiaoyan [2 ]
机构
[1] Nankai Univ, Sch Stat & Data Sci, Tianjin 300071, Peoples R China
[2] Ningxia Univ, Sch Math & Stat, Yinchuan 750021, Peoples R China
基金
中国国家自然科学基金;
关键词
Precision matrix; High-dimensional compositional data; Centered log-ratio transformation; Sparsity; Huber robustness; COVARIANCE; CONVERGENCE; RATES;
D O I
10.1016/j.spl.2022.109379
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Motivated by the rapid development in the high-dimensional compositional data analysis, an "Approximate-Plug " framework with theoretical justifications is proposed to provide robust precision matrix estimation for this kind of data under the sparsity assumption. To be specific, we first construct a Huber-robustness estimator ((gamma) over tilde)& nbsp;to approximate the centered log-ratio covariance matrix. Then we plug ((gamma) over tilde) into a constrained l1-minimization procedure to obtain the final estimator tilde ((omega) over tilde). Through imposing some mild conditions, we derive the convergence rate under the entrywise maximum norm and the spectral norm. Given that SpiecEasi in Kurtz et al. (2015) shares same routine with us but lacks of robustness and theoretical guarantees, simulation studies are conducted to show the privileges of our procedure. We also apply the proposed method on a real data. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Efficient Minimax Estimation of a Class of High-Dimensional Sparse Precision Matrices
    Chen, Xiaohui
    Kim, Young-Heon
    Wang, Z. Jane
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (06) : 2899 - 2912
  • [22] High-dimensional precision matrix estimation with a known graphical structure
    Le, Thien-Minh
    Zhong, Ping-Shou
    STAT, 2022, 11 (01):
  • [23] Calibrated Precision Matrix Estimation for High-Dimensional Elliptical Distributions
    Zhao, Tuo
    Liu, Han
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (12) : 7874 - 7887
  • [24] CLASSIFICATION OF HIGH-DIMENSIONAL DATA USING THE SPARSE MATRIX TRANSFORM
    Bachega, Leonardo R. |
    Bouman, Charles A.
    2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, : 265 - 268
  • [25] On Coupling Robust Estimation with Regularization for High-Dimensional Data
    Kalina, Jan
    Hlinka, Jaroslav
    DATA SCIENCE: INNOVATIVE DEVELOPMENTS IN DATA ANALYSIS AND CLUSTERING, 2017, : 15 - 27
  • [26] Robust and sparse estimation methods for high-dimensional linear and logistic regression
    Kurnaz, Fatma Sevinc
    Hoffmann, Irene
    Filzmoser, Peter
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2018, 172 : 211 - 222
  • [27] Sparse least trimmed squares regression with compositional covariates for high-dimensional data
    Monti, Gianna Serafina
    Filzmoser, Peter
    BIOINFORMATICS, 2021, 37 (21) : 3805 - 3814
  • [28] Meta Learning for Support Recovery in High-dimensional Precision Matrix Estimation
    Zhang, Qian
    Zheng, Yilin
    Honorio, Jean
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [29] Robust and sparse k-means clustering for high-dimensional data
    Brodinova, Sarka
    Filzmoser, Peter
    Ortner, Thomas
    Breiteneder, Christian
    Rohm, Maia
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2019, 13 (04) : 905 - 932
  • [30] Honest confidence regions and optimality in high-dimensional precision matrix estimation
    Jana Janková
    Sara van de Geer
    TEST, 2017, 26 : 143 - 162