Honest confidence regions and optimality in high-dimensional precision matrix estimation

被引:0
|
作者
Jana Janková
Sara van de Geer
机构
[1] Seminar for Statistics,
[2] ETH Zürich,undefined
来源
TEST | 2017年 / 26卷
关键词
Precision matrix; Sparsity; Inference; Asymptotic normality; Confidence regions; 62J07; 62F12;
D O I
暂无
中图分类号
学科分类号
摘要
We propose methodology for estimation of sparse precision matrices and statistical inference for their low-dimensional parameters in a high-dimensional setting where the number of parameters p can be much larger than the sample size. We show that the novel estimator achieves minimax rates in supremum norm and the low-dimensional components of the estimator have a Gaussian limiting distribution. These results hold uniformly over the class of precision matrices with row sparsity of small order n/logp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{n}/\log p$$\end{document} and spectrum uniformly bounded, under a sub-Gaussian tail assumption on the margins of the true underlying distribution. Consequently, our results lead to uniformly valid confidence regions for low-dimensional parameters of the precision matrix. Thresholding the estimator leads to variable selection without imposing irrepresentability conditions. The performance of the method is demonstrated in a simulation study and on real data.
引用
收藏
页码:143 / 162
页数:19
相关论文
共 50 条
  • [1] Honest confidence regions and optimality in high-dimensional precision matrix estimation
    Jankova, Jana
    van de Geer, Sara
    TEST, 2017, 26 (01) : 143 - 162
  • [2] COVARIANCE AND PRECISION MATRIX ESTIMATION FOR HIGH-DIMENSIONAL TIME SERIES
    Chen, Xiaohui
    Xu, Mengyu
    Wu, Wei Biao
    ANNALS OF STATISTICS, 2013, 41 (06): : 2994 - 3021
  • [3] High-dimensional precision matrix estimation with a known graphical structure
    Le, Thien-Minh
    Zhong, Ping-Shou
    STAT, 2022, 11 (01):
  • [4] Calibrated Precision Matrix Estimation for High-Dimensional Elliptical Distributions
    Zhao, Tuo
    Liu, Han
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (12) : 7874 - 7887
  • [5] Honest Confidence Sets for High-Dimensional Regression by Projection and Shrinkage
    Zhou, Kun
    Li, Ker-Chau
    Zhou, Qing
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2023, 118 (541) : 469 - 488
  • [6] Aggregation and minimax optimality in high-dimensional estimation
    Tsybakov, Alexandre B.
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL IV, 2014, : 225 - 246
  • [7] Meta Learning for Support Recovery in High-dimensional Precision Matrix Estimation
    Zhang, Qian
    Zheng, Yilin
    Honorio, Jean
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [8] Regularized estimation of precision matrix for high-dimensional multivariate longitudinal data
    Qian, Fang
    Chen, Yu
    Zhang, Weiping
    JOURNAL OF MULTIVARIATE ANALYSIS, 2020, 176
  • [9] Robust sparse precision matrix estimation for high-dimensional compositional data
    Liang, Wanfeng
    Wu, Yue
    Ma, Xiaoyan
    STATISTICS & PROBABILITY LETTERS, 2022, 184
  • [10] Estimation of high-dimensional vector autoregression via sparse precision matrix
    Poignard, Benjamin
    Asai, Manabu
    ECONOMETRICS JOURNAL, 2023, 26 (02): : 307 - 326