Honest confidence regions and optimality in high-dimensional precision matrix estimation

被引:0
|
作者
Jana Janková
Sara van de Geer
机构
[1] Seminar for Statistics,
[2] ETH Zürich,undefined
来源
TEST | 2017年 / 26卷
关键词
Precision matrix; Sparsity; Inference; Asymptotic normality; Confidence regions; 62J07; 62F12;
D O I
暂无
中图分类号
学科分类号
摘要
We propose methodology for estimation of sparse precision matrices and statistical inference for their low-dimensional parameters in a high-dimensional setting where the number of parameters p can be much larger than the sample size. We show that the novel estimator achieves minimax rates in supremum norm and the low-dimensional components of the estimator have a Gaussian limiting distribution. These results hold uniformly over the class of precision matrices with row sparsity of small order n/logp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{n}/\log p$$\end{document} and spectrum uniformly bounded, under a sub-Gaussian tail assumption on the margins of the true underlying distribution. Consequently, our results lead to uniformly valid confidence regions for low-dimensional parameters of the precision matrix. Thresholding the estimator leads to variable selection without imposing irrepresentability conditions. The performance of the method is demonstrated in a simulation study and on real data.
引用
收藏
页码:143 / 162
页数:19
相关论文
共 50 条
  • [31] Estimation of high-dimensional sparse cross correlation matrix
    Cao, Yin
    Seo, Kwangok
    Ahn, Soohyun
    Lim, Johan
    COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2022, 29 (06) : 655 - 664
  • [32] Robust estimation of a high-dimensional integrated covariance matrix
    Morimoto, Takayuki
    Nagata, Shuichi
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (02) : 1102 - 1112
  • [33] Sparse covariance matrix estimation in high-dimensional deconvolution
    Belomestny, Denis
    Trabs, Mathias
    Tsybakov, Alexandre B.
    BERNOULLI, 2019, 25 (03) : 1901 - 1938
  • [34] Bandwidth Selection for High-Dimensional Covariance Matrix Estimation
    Qiu, Yumou
    Chen, Song Xi
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2015, 110 (511) : 1160 - 1174
  • [35] On the optimality of kernels for high-dimensional clustering
    Vankadara, Leena Chennuru
    Ghoshdastidar, Debarghya
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108
  • [36] Fast precision estimation in high-dimensional multivariate joint models
    Nassiri, Vahid
    Ivanova, Anna
    Molenberghs, Geert
    Verbeke, Geert
    BIOMETRICAL JOURNAL, 2017, 59 (06) : 1221 - 1231
  • [37] EMPIRICAL BAYES METHODS FOR ESTIMATION AND CONFIDENCE INTERVALS IN HIGH-DIMENSIONAL PROBLEMS
    Ghosh, Debashis
    STATISTICA SINICA, 2009, 19 (01) : 125 - 143
  • [38] Posterior convergence rates for high-dimensional precision matrix estimation using G-Wishart priors
    Banerjee, Sayantan
    STAT, 2017, 6 (01): : 207 - 217
  • [39] Transfer learning for high-dimensional linear regression: Prediction, estimation and minimax optimality
    Li, Sai
    Cai, T. Tony
    Li, Hongzhe
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2022, 84 (01) : 149 - 173
  • [40] High-dimensional volatility matrix estimation via wavelets and thresholding
    Fryzlewicz, P.
    BIOMETRIKA, 2013, 100 (04) : 921 - 938