Deceleration phase of inertial confinement fusion implosions

被引:129
|
作者
Betti, R
Anderson, K
Goncharov, VN
McCrory, RL
Meyerhofer, DD
Skupsky, S
Town, RPJ
机构
[1] Univ Rochester, Laser Energet Lab, Dept Mech Engn, Rochester, NY 14623 USA
[2] Univ Rochester, Laser Energet Lab, Dept Phys & Astron, Rochester, NY 14623 USA
关键词
D O I
10.1063/1.1459458
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A model for the deceleration phase and marginal ignition of imploding capsules is derived by solving a set of ordinary differential equations describing the hot-spot energy balance and the shell dynamics including the return shock propagation. It is found that heat flux leaving the hot spot goes back in the form of internal energy and PdV work of the material ablated off the inner-shell surface. Though the hot-spot temperature is reduced by the heat conduction losses, the hot-spot density increases due to the ablated material in such a way that the hot-spot pressure is approximately independent of heat conduction. For hot-spot temperatures exceeding approximately 7 keV, the ignition conditions are not affected by heat conduction losses that are recycled into the hot spot by ablation. Instead, the only significant internal energy loss is due to the hot-spot expansion tamped by the surrounding shell. The change of adiabat induced by the shock is also calculated for marginally igniting shells, and the relation between the in-flight and stagnation adiabats is in general agreement with the numerical fit of LASNEX simulations by Herrmann [Nucl. Fusion 41, 99 (2001)] and the self-similar solution of Kemp [Phys. Rev. Lett. 15, 3336 (2001)]. The minimum kinetic energy required for ignition is also calculated from the same model and shown to be in good agreement with the numerical fit of LASNEX simulations. It is also found that mass ablation leads to a significant reduction of the deceleration phase Rayleigh-Taylor instability growth rates and to the suppression of short wavelength modes. (C) 2002 American Institute of Physics.
引用
收藏
页码:2277 / 2286
页数:10
相关论文
共 50 条
  • [21] Developing one-dimensional implosions for inertial confinement fusion science
    Kline, J. L.
    Yi, S. A.
    Simakov, A. N.
    Olson, R. E.
    Wilson, D. C.
    Kyrala, G. A.
    Perry, T. S.
    Batha, S. H.
    Dewald, E. L.
    Ralph, J. E.
    Strozzi, D. J.
    MacPhee, A. G.
    Callahan, D. A.
    Hinkel, D.
    Hurricane, O. A.
    Leeper, R. J.
    Zylstra, A. B.
    Peterson, R. R.
    Haines, B. M.
    Yin, L.
    Bradley, P. A.
    Shah, R. C.
    Braun, T.
    Biener, J.
    Kozioziemski, B. J.
    Sater, J. D.
    Biener, M. M.
    Hamza, A. V.
    Nikroo, A.
    Hopkins, L. F. Berzak
    Ho, D.
    LePape, S.
    Meezan, N. B.
    Montgomery, D. S.
    Daughton, W. S.
    Merritt, E. C.
    Cardenas, T.
    Dodd, E. S.
    HIGH POWER LASER SCIENCE AND ENGINEERING, 2016, 4
  • [22] Core temperature and density profile measurements in inertial confinement fusion implosions
    Koch, J. A.
    Izumi, N.
    Welser, L. A.
    Mancini, R. C.
    Haan, S. W.
    Lee, R. W.
    Amendt, P. A.
    Barbee, T. W., Jr.
    Dalhed, S.
    Fujita, K.
    Golovkin, I. E.
    Klein, L.
    Landen, O. L.
    Marshall, F. J.
    Meyerhofer, D. D.
    Nishimura, H.
    Ochi, Y.
    Regan, S.
    Sangster, T. C.
    Smalyuk, V.
    Tommasini, R.
    HIGH ENERGY DENSITY PHYSICS, 2008, 4 (1-2) : 1 - 17
  • [23] Diagnostic signatures of performance degrading perturbations in inertial confinement fusion implosions
    McGlinchey, K.
    Appelbe, B. D.
    Crilly, A. J.
    Tong, J. K.
    Walsh, C. A.
    Chittenden, J. P.
    PHYSICS OF PLASMAS, 2018, 25 (12)
  • [24] Density determination of the thermonuclear fuel region in inertial confinement fusion implosions
    Volegov, P. L.
    Batha, S. H.
    Geppert-Kleinrath, V.
    Danly, C. R.
    Merrill, F. E.
    Wilde, C. H.
    Wilson, D. C.
    Casey, D. T.
    Fittinghoff, D.
    Appelbe, B.
    Chittenden, J. P.
    Crilly, A. J.
    McGlinchey, K.
    JOURNAL OF APPLIED PHYSICS, 2020, 127 (08)
  • [25] Interactive tools designed to study mix in inertial confinement fusion implosions
    Welser-Sherrill, L.
    Cooley, J. H.
    Wilson, D. C.
    COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (06) : 835 - 841
  • [26] Proton core imaging of the nuclear burn in inertial confinement fusion implosions
    DeCiantis, JL
    Séguin, FH
    Frenje, JA
    Berube, V
    Canavan, MJ
    Chen, CD
    Kurebayashi, S
    Li, CK
    Rygg, JR
    Schwartz, BE
    Petrasso, RD
    Delettrez, JA
    Regan, SP
    Smalyuk, VA
    Knauer, JP
    Marshall, FJ
    Meyerhofer, DD
    Roberts, S
    Sangster, TC
    Stoeckl, C
    Mikaelian, K
    Park, HS
    Robey, HF
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2006, 77 (04):
  • [27] Perturbation modifications by pre-magnetisation of inertial confinement fusion implosions
    Walsh, C. A.
    McGlinchey, K.
    Tong, J. K.
    Appelbe, B. D.
    Crilly, A.
    Zhang, M. F.
    Chittenden, J. P.
    PHYSICS OF PLASMAS, 2019, 26 (02)
  • [28] Observation of interspecies ion separation in inertial-confinement-fusion implosions
    Hsu, S. C.
    Joshi, T. R.
    Hakel, P.
    Vold, E. L.
    Schmitt, M. J.
    Hoffman, N. M.
    Rauenzahn, R. M.
    Kagan, G.
    Tang, X. -Z.
    Mancini, R. C.
    Kim, Y.
    Herrmann, H. W.
    EPL, 2016, 115 (06)
  • [29] Magnetically Driven Implosions for Inertial Confinement Fusion at Sandia National Laboratories
    Cuneo, M. E.
    Herrmann, M. C.
    Sinars, D. B.
    Slutz, S. A.
    Stygar, W. A.
    Vesey, R. A.
    Sefkow, A. B.
    Rochau, G. A.
    Chandler, G. A.
    Bailey, J. E.
    Porter, J. L.
    McBride, R. D.
    Rovang, D. C.
    Rovang, D. C.
    Mazarakis, M. G.
    Yu, E. P.
    Lamppa, D. C.
    Peterson, K. J.
    Nakhleh, C.
    Hansen, S. B.
    Lopez, A. J.
    Savage, M. E.
    Jennings, C. A.
    Martin, M. R.
    Lemke, R. W.
    Atherton, B. W.
    Smith, I. C.
    Rambo, P. K.
    Jones, M.
    Lopez, M. R.
    Christenson, P. J.
    Sweeney, M. A.
    Jones, B.
    McPherson, L. A.
    Harding, E.
    Gomez, M. R.
    Knapp, P. F.
    Awe, T. J.
    Leeper, R. J.
    Ruiz, C. L.
    Cooper, G. W.
    Hahn, K. D.
    McKenney, J.
    Owen, A. C.
    McKee, G. R.
    Leifeste, G. T.
    Ampleford, D. J.
    Waisman, E. M.
    Harvey-Thompson, A.
    Kaye, R. J.
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2012, 40 (12) : 3222 - 3245
  • [30] High-performance inertial confinement fusion target implosions on OMEGA
    Meyerhofer, D. D.
    McCrory, R. L.
    Betti, R.
    Boehly, T. R.
    Casey, D. T.
    Collins, T. J. B.
    Craxton, R. S.
    Delettrez, J. A.
    Edgell, D. H.
    Epstein, R.
    Fletcher, K. A.
    Frenje, J. A.
    Glebov, Y. Yu
    Goncharov, V. N.
    Harding, D. R.
    Hu, S. X.
    Igumenshchev, I. V.
    Knauer, J. P.
    Li, C. K.
    Marozas, J. A.
    Marshall, F. J.
    McKenty, P. W.
    Nilson, P. M.
    Padalino, S. P.
    Petrasso, R. D.
    Radha, P. B.
    Regan, S. P.
    Sangster, T. C.
    Seguin, F. H.
    Seka, W.
    Short, R. W.
    Shvarts, D.
    Skupsky, S.
    Soures, J. M.
    Stoeckl, C.
    Theobald, W.
    Yaakobi, B.
    NUCLEAR FUSION, 2011, 51 (05)