Deceleration phase of inertial confinement fusion implosions

被引:129
|
作者
Betti, R
Anderson, K
Goncharov, VN
McCrory, RL
Meyerhofer, DD
Skupsky, S
Town, RPJ
机构
[1] Univ Rochester, Laser Energet Lab, Dept Mech Engn, Rochester, NY 14623 USA
[2] Univ Rochester, Laser Energet Lab, Dept Phys & Astron, Rochester, NY 14623 USA
关键词
D O I
10.1063/1.1459458
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A model for the deceleration phase and marginal ignition of imploding capsules is derived by solving a set of ordinary differential equations describing the hot-spot energy balance and the shell dynamics including the return shock propagation. It is found that heat flux leaving the hot spot goes back in the form of internal energy and PdV work of the material ablated off the inner-shell surface. Though the hot-spot temperature is reduced by the heat conduction losses, the hot-spot density increases due to the ablated material in such a way that the hot-spot pressure is approximately independent of heat conduction. For hot-spot temperatures exceeding approximately 7 keV, the ignition conditions are not affected by heat conduction losses that are recycled into the hot spot by ablation. Instead, the only significant internal energy loss is due to the hot-spot expansion tamped by the surrounding shell. The change of adiabat induced by the shock is also calculated for marginally igniting shells, and the relation between the in-flight and stagnation adiabats is in general agreement with the numerical fit of LASNEX simulations by Herrmann [Nucl. Fusion 41, 99 (2001)] and the self-similar solution of Kemp [Phys. Rev. Lett. 15, 3336 (2001)]. The minimum kinetic energy required for ignition is also calculated from the same model and shown to be in good agreement with the numerical fit of LASNEX simulations. It is also found that mass ablation leads to a significant reduction of the deceleration phase Rayleigh-Taylor instability growth rates and to the suppression of short wavelength modes. (C) 2002 American Institute of Physics.
引用
收藏
页码:2277 / 2286
页数:10
相关论文
共 50 条
  • [11] INDIRECTLY DRIVEN, HIGH CONVERGENCE INERTIAL CONFINEMENT FUSION IMPLOSIONS
    CABLE, MD
    HATCHETT, SP
    CAIRD, JA
    KILKENNY, JD
    KORNBLUM, HN
    LANE, SM
    LAUMANN, C
    LERCHE, RA
    MURPHY, TJ
    MURRAY, J
    NELSON, MB
    PHILLION, DW
    POWELL, H
    RESS, DB
    PHYSICAL REVIEW LETTERS, 1994, 73 (17) : 2316 - 2319
  • [12] Effect of the mounting membrane on shape in inertial confinement fusion implosions
    Nagel, S. R.
    Haan, S. W.
    Rygg, J. R.
    Barrios, M.
    Benedetti, L. R.
    Bradley, D. K.
    Field, J. E.
    Hammel, B. A.
    Izumi, N.
    Jones, O. S.
    Khan, S. F.
    Ma, T.
    Pak, A. E.
    Tommasini, R.
    Town, R. P. J.
    PHYSICS OF PLASMAS, 2015, 22 (02)
  • [13] Direct-Drive Inertial Confinement Fusion Implosions on Omega
    S. P. Regan
    T. C. Sangster
    D. D. Meyerhofer
    K. Anderson
    R. Betti
    T. R. Boehly
    T. J. B. Collins
    R. S. Craxton
    J. A. Delettrez
    R. Epstein
    O. V. Gotchev
    V. Yu. Glebov
    V. N. Goncharov
    D. R. Harding
    P. A. Jaanimagi
    J. P. Knauer
    S. J. Loucks
    L. D. Lund
    J. A. Marozas
    F. J. Marshall
    R. L. Mccrory
    P. W. Mckenty
    S. F. B. Morse
    P. B. Radha
    W. Seka
    S. Skupsky
    H. Sawada
    V. A. Smalyuk
    J. M. Soures
    C. Stoeckl
    B. Yaakobi
    J. A. Frenje
    C. K. Li
    R. D. Petrasso
    F. H. SÉguin
    Astrophysics and Space Science, 2005, 298 : 227 - 233
  • [14] Direct-drive inertial confinement fusion implosions on omega
    Regan, SP
    Sangster, TC
    Meyerhofer, DD
    Anderson, K
    Betti, R
    Boehly, TR
    Collins, TJB
    Craxton, RS
    Delettrez, JA
    Epstein, R
    Gotchev, OV
    Glebov, VY
    Goncharov, VN
    Harding, DR
    Jaanimagi, PA
    Knauer, JP
    Loucks, SJ
    Lund, LD
    Marozas, JA
    Marshall, FJ
    McCrory, RL
    McKenty, PW
    Morse, SFB
    Radha, PB
    Seka, W
    Skupsky, S
    Sawada, H
    Smalyuk, VA
    Soures, JM
    Stoeckl, C
    Yaakobi, B
    Frenje, JA
    Li, CK
    Petrasso, RD
    Séguin, FH
    ASTROPHYSICS AND SPACE SCIENCE, 2005, 298 (1-2) : 227 - 233
  • [15] Impact of stalk on directly driven inertial confinement fusion implosions
    Gatu Johnson, M.
    Adrian, P. J.
    Anderson, K. S.
    Appelbe, B. D.
    Chittenden, J. P.
    Crilly, A. J.
    Edgell, D.
    Forrest, C. J.
    Frenje, J. A.
    Glebov, V. Yu.
    Haines, B. M.
    Igumenshchev, I.
    Jacobs-Perkins, D.
    Janezic, R.
    Kabadi, N. V.
    Knauer, J. P.
    Lahmann, B.
    Mannion, O. M.
    Marshall, F. J.
    Michel, T.
    Seguin, F. H.
    Shah, R.
    Stoeckl, C.
    Walsh, C. A.
    Petrasso, R. D.
    PHYSICS OF PLASMAS, 2020, 27 (03)
  • [16] Spectroscopic determination of core gradients in inertial confinement fusion implosions
    Mancini, RC
    Welser, LA
    Golovkin, IE
    Ochi, Y
    Fujita, K
    Nishimura, H
    Butzbach, R
    Uschmann, I
    Förster, E
    Marshall, FJ
    Delettrez, JA
    Koch, JA
    Dalhed, HE
    Lee, RW
    Klein, L
    ATOMIC PROCESSES IN PLASMAS, 2002, 635 : 61 - 70
  • [17] Strong Coupling and Degeneracy Effects in Inertial Confinement Fusion Implosions
    Hu, S. X.
    Militzer, B.
    Goncharov, V. N.
    Skupsky, S.
    PHYSICAL REVIEW LETTERS, 2010, 104 (23)
  • [18] Impact of Localized Radiative Loss on Inertial Confinement Fusion Implosions
    Pak, A.
    Divol, L.
    Weber, C. R.
    Hopkins, L. F. Berzak
    Clark, D. S.
    Dewald, E. L.
    Fittinghoff, D. N.
    Geppert-Kleinrath, V
    Hohenberger, M.
    Le Pape, S.
    Ma, T.
    MacPhee, A. G.
    Mariscal, D. A.
    Marley, E.
    Moore, A. S.
    Pickworth, L. A.
    Volegov, P. L.
    Wilde, C.
    Hurricane, O. A.
    Patel, P. K.
    PHYSICAL REVIEW LETTERS, 2020, 124 (14)
  • [19] Experimentally Inferred Fusion Yield Dependencies of OMEGA Inertial Confinement Fusion Implosions
    Lees, A.
    Betti, R.
    Knauer, J. P.
    Gopalaswamy, V.
    Patel, D.
    Woo, K. M.
    Anderson, K. S.
    Campbell, E. M.
    Cao, D.
    Carroll-Nellenback, J.
    Epstein, R.
    Forrest, C.
    Goncharov, V. N.
    Harding, D. R.
    Hu, S. X.
    Igumenshchev, I. V.
    Janezic, R. T.
    Mannion, O. M.
    Radha, P. B.
    Regan, S. P.
    Shvydky, A.
    Shah, R. C.
    Shmayda, W. T.
    Stoeckl, C.
    Theobald, W.
    Thomas, C.
    PHYSICAL REVIEW LETTERS, 2021, 127 (10)
  • [20] Developing one-dimensional implosions for inertial confinement fusion science
    Kline, J. L.
    Yi, S. A.
    Simakov, A. N.
    Olson, R. E.
    Wilson, D. C.
    Kyrala, G. A.
    Perry, T. S.
    Batha, S. H.
    Dewald, E. L.
    Ralph, J. E.
    Strozzi, D. J.
    MacPhee, A. G.
    Callahan, D. A.
    Hinkel, D.
    Hurricane, O. A.
    Leeper, R. J.
    Zylstra, A. B.
    Peterson, R. R.
    Haines, B. M.
    Yin, L.
    Bradley, P. A.
    Shah, R. C.
    Braun, T.
    Biener, J.
    Kozioziemski, B. J.
    Sater, J. D.
    Biener, M. M.
    Hamza, A. V.
    Nikroo, A.
    Hopkins, L. F. Berzak
    Ho, D.
    LePape, S.
    Meezan, N. B.
    Montgomery, D. S.
    Daughton, W. S.
    Merritt, E. C.
    Cardenas, T.
    Dodd, E. S.
    HIGH POWER LASER SCIENCE AND ENGINEERING, 2016, 4