Modulational instability and spatial structures of the Ablowitz-Ladik equation

被引:7
|
作者
Mohamadou, Alidou
Fopa, Ferdinand
Kofane, Timoleon Crepin
机构
[1] Univ Yaounde, Fac Sci, Dept Phys, Lab Mecan, Yaounde, Cameroon
[2] Univ Douala, Fac Sci, Dept Phys, Condensed Matter Lab, Douala, Cameroon
[3] Abdus Salam Int Ctr Theoret Phys, I-34014 Trieste, Italy
关键词
Ablowitz-Ladik equation; multiple scale analysis; pulse train; spatial soliton;
D O I
10.1016/j.optcom.2006.05.028
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Spatial structures as a result of a modulational instability are obtained in the integrable discrete nonlinear Schrodinger equation (Ablowitz-Ladik equation). Discrete slow space variables are used in a general setting and the related finite differences are constructed. Analyzing the ensuing equation, we derive the modulational instability criterion from the discrete multiple scales approach. Numerical simulations in agreement with analytical studies lead to the disintegrations of the initial modulated waves into a train of pulses. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:648 / 655
页数:8
相关论文
共 50 条
  • [11] Symplectic integrators for the Ablowitz-Ladik discrete nonlinear Schrodinger equation
    Schober, CM
    PHYSICS LETTERS A, 1999, 259 (02) : 140 - 151
  • [12] The Ablowitz-Ladik Hierarchy Revisited
    Gesztesy, Fritz
    Holden, Helge
    Michor, Johanna
    Teschl, Gerald
    METHODS OF SPECTRAL ANALYSIS IN MATHEMATICAL PHYSICS, 2009, 186 : 139 - +
  • [13] ON DISCRETE ABLOWITZ-LADIK EIGENVALUE PROBLEM
    CHENG, Y
    SCIENTIA SINICA SERIES A-MATHEMATICAL PHYSICAL ASTRONOMICAL & TECHNICAL SCIENCES, 1986, 29 (06): : 582 - 594
  • [14] ON DISCRETE ABLOWITZ-LADIK EIGENVALUE PROBLEM
    程艺
    ScienceinChina,SerA., 1986, Ser.A.1986 (06) : 582 - 594
  • [15] Solitons in coupled Ablowitz-Ladik chains
    Malomed, BA
    Yang, JK
    PHYSICS LETTERS A, 2002, 302 (04) : 163 - 170
  • [16] Symplectic methods for the Ablowitz-Ladik discrete nonlinear Schrodinger equation
    Tang, Yifa
    Cao, Jianwen
    Liu, Xiangtao
    Sun, Yuanchang
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (10) : 2425 - 2437
  • [17] Symplectic methods for the Ablowitz-Ladik model
    Tang, YF
    PerezGarcia, VM
    Vazquez, L
    APPLIED MATHEMATICS AND COMPUTATION, 1997, 82 (01) : 17 - 38
  • [18] Multi-Hamiltonian Structure for the Finite Defocusing Ablowitz-Ladik Equation
    Gekhtman, Michael
    Nenciu, Irina
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2009, 62 (02) : 147 - 182
  • [19] Solitary waves in the Ablowitz-Ladik equation with power-law nonlinearity
    Cuevas-Maraver, J.
    Kevrekidis, P. G.
    Malomed, Boris A.
    Guo, Lijuan
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (06)
  • [20] New symmetries for the Ablowitz-Ladik hierarchies
    Zhang, Da-Jun
    Ning, Tong-Ke
    Bi, Jin-Bo
    Chen, Deng-Yuan
    PHYSICS LETTERS A, 2006, 359 (05) : 458 - 466