Multi-Hamiltonian Structure for the Finite Defocusing Ablowitz-Ladik Equation

被引:8
|
作者
Gekhtman, Michael [1 ]
Nenciu, Irina [2 ]
机构
[1] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
[2] NYU, Courant Inst, New York, NY 10012 USA
基金
美国国家科学基金会;
关键词
POISSON BRACKETS; TODA LATTICE; ANALOG; SCHUR; ZEROS;
D O I
10.1002/cpa.20255
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Poisson structure associated to the defocusing Ablowitz-Ladik equation from a functional-analytical point of view by reexpressing the Poisson bracket in terms of the associated Caratheodory function. Using this expression, we are able to introduce a family of compatible Poisson brackets that form a multi-Hamiltonian structure for the Ablowitz-Ladik equation. Furthermore, we show using some of these new Poisson brackets that the Geronimus relations between orthogonal polynomials on the unit circle and those on the interval define an algebraic and symplectic mapping between the Ablowitz-Ladik and Toda hierarchies. (C) 2008 Wiley Periodicals, Inc.
引用
收藏
页码:147 / 182
页数:36
相关论文
共 50 条
  • [1] A generalized Ablowitz-Ladik hierarchy, multi-Hamiltonian structure and Darboux transformation
    Qin Zhenyun
    JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (06)
  • [2] Tri-Hamiltonian structure of the Ablowitz-Ladik hierarchy
    Li, Shuangxing
    Liu, Si-Qi
    Qu, Haonan
    Zhang, Youjin
    PHYSICA D-NONLINEAR PHENOMENA, 2022, 433
  • [3] The periodic defocusing Ablowitz-Ladik equation and the geometry of Floquet CMV matrices
    Li, Luen-Chau
    Nenciu, Irina
    ADVANCES IN MATHEMATICS, 2012, 231 (06) : 3330 - 3388
  • [4] Generalized Ablowitz-Ladik equation with a dual Lagrangian structure
    Fujioka, Jorge
    Espinosa, Aurea
    PHYSICS LETTERS A, 2019, 383 (27)
  • [5] Nonlocal Reductions of the Ablowitz-Ladik Equation
    Grahovski, G. G.
    Mohammed, A. J.
    Susanto, H.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2018, 197 (01) : 1412 - 1429
  • [6] Integrable coupling of the Ablowitz-Ladik hierarchy and its Hamiltonian structure
    Yao, Yuqin
    Ji, Jie
    Liu, Yuqing
    Chen, Dengyuan
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (02) : 557 - 568
  • [7] General rogue waves in the focusing and defocusing Ablowitz-Ladik equations
    Ohta, Yasuhiro
    Yang, Jianke
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (25)
  • [8] On the discrete Kuznetsov-Ma solutions for the defocusing Ablowitz-Ladik equation with large background amplitude
    Boadi, E. C.
    Charalampidis, E. G.
    Kevrekidis, P. G.
    Ossi, N. J.
    Prinari, B.
    WAVE MOTION, 2025, 134
  • [9] Finite genus solutions to the Ablowitz-Ladik equations
    Miller, PD
    Ercolani, NM
    Krichever, IM
    Levermore, CD
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1995, 48 (12) : 1369 - 1440
  • [10] The Ablowitz-Ladik system on a finite set of integers
    Xia, Baoqiang
    NONLINEARITY, 2018, 31 (07) : 3086 - 3114