Multi-Hamiltonian Structure for the Finite Defocusing Ablowitz-Ladik Equation

被引:8
|
作者
Gekhtman, Michael [1 ]
Nenciu, Irina [2 ]
机构
[1] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
[2] NYU, Courant Inst, New York, NY 10012 USA
基金
美国国家科学基金会;
关键词
POISSON BRACKETS; TODA LATTICE; ANALOG; SCHUR; ZEROS;
D O I
10.1002/cpa.20255
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Poisson structure associated to the defocusing Ablowitz-Ladik equation from a functional-analytical point of view by reexpressing the Poisson bracket in terms of the associated Caratheodory function. Using this expression, we are able to introduce a family of compatible Poisson brackets that form a multi-Hamiltonian structure for the Ablowitz-Ladik equation. Furthermore, we show using some of these new Poisson brackets that the Geronimus relations between orthogonal polynomials on the unit circle and those on the interval define an algebraic and symplectic mapping between the Ablowitz-Ladik and Toda hierarchies. (C) 2008 Wiley Periodicals, Inc.
引用
收藏
页码:147 / 182
页数:36
相关论文
共 50 条
  • [21] Inverse scattering transform for the defocusing Ablowitz-Ladik system with arbitrarily large nonzero background
    Ortiz, Alyssa K.
    Prinari, Barbara
    STUDIES IN APPLIED MATHEMATICS, 2019, 143 (04) : 373 - 403
  • [22] Symplectic methods for the Ablowitz-Ladik discrete nonlinear Schrodinger equation
    Tang, Yifa
    Cao, Jianwen
    Liu, Xiangtao
    Sun, Yuanchang
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (10) : 2425 - 2437
  • [23] Solitary waves in the Ablowitz-Ladik equation with power-law nonlinearity
    Cuevas-Maraver, J.
    Kevrekidis, P. G.
    Malomed, Boris A.
    Guo, Lijuan
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (06)
  • [24] Symplectic integrators for the Ablowitz-Ladik discrete nonlinear Schrödinger equation
    Schober, C.M.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 259 (02): : 140 - 151
  • [25] Inverse scattering transform and the soliton solution of the discrete Ablowitz-Ladik equation
    Li, Yin
    Chen, Meisen
    PHYSICA D-NONLINEAR PHENOMENA, 2025, 472
  • [26] Modulational instability and dynamics of multi-rogue wave solutions for the discrete Ablowitz-Ladik equation
    Wen, Xiao-Yong
    Yan, Zhenya
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (07)
  • [27] Approach to first-order exact solutions of the Ablowitz-Ladik equation
    Ankiewicz, Adrian
    Akhmediev, Nail
    Lederer, Falk
    PHYSICAL REVIEW E, 2011, 83 (05):
  • [28] Generalized Darboux transformation and solitons for the Ablowitz-Ladik equation in an electrical lattice
    Wu, Xi -Hu
    Gao, Yi-Tian
    APPLIED MATHEMATICS LETTERS, 2023, 137
  • [29] EXTENSION OF THE ABLOWITZ-LADIK METHOD TO THE DERIVATIVE NONLINEAR SCHRODINGER-EQUATION
    DAWSON, SP
    FONTAN, CF
    JOURNAL OF COMPUTATIONAL PHYSICS, 1988, 76 (01) : 192 - 200
  • [30] Long-time asymptotics for the defocusing Ablowitz-Ladik system with initial data in lower regularity
    Chen, Meisen
    He, Jingsong
    Fan, Engui
    ADVANCES IN MATHEMATICS, 2024, 450