Effect of spatial confinement on magnetic hyperthermia via dipolar interactions in Fe3O4 nanoparticles for biomedical applications

被引:113
|
作者
Sadat, M. E. [1 ]
Patel, Ronak [2 ]
Sookoor, Jason [3 ]
Bud'ko, Sergey L. [4 ,5 ]
Ewing, Rodney C. [6 ]
Zhang, Jiaming [6 ]
Xu, Hong [7 ]
Wang, Yilong [8 ]
Pauletti, Giovanni M. [9 ]
Mast, David B. [1 ]
Shi, Donglu [2 ,7 ,8 ]
机构
[1] Univ Cincinnati, Dept Phys, Cincinnati, OH 45221 USA
[2] Univ Cincinnati, Coll Engn & Appl Sci, Dept Mech & Mat Engn, Mat Sci & Engn Program, Cincinnati, OH 45221 USA
[3] Univ Cincinnati, Dept Neurosci, Cincinnati, OH 45221 USA
[4] Iowa State Univ, Ames Lab, Ames, IA 50011 USA
[5] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA
[6] Stanford Univ, Dept Geol & Environm Sci, Stanford, CA 94305 USA
[7] Shanghai Jiao Tong Univ, Med X Inst, Shanghai 200030, Peoples R China
[8] Tongji Univ, Shanghai East Hosp, Sch Med, Inst Biomed Engn & Nano Sci, Shanghai 200120, Peoples R China
[9] Univ Cincinnati, James L Winkle Coll Pharm, Cincinnati, OH 45267 USA
来源
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS | 2014年 / 42卷
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Fe3O4; nanoparticles; Magnetic anisotropy; Dipole interaction; Superparamagnetism; Neel relaxation; FLUID; ILLITE; SIZE; RELAXATION; MECHANISMS; RATES; XRD;
D O I
10.1016/j.msec.2014.04.064
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
In this work, the effect of nanoparticle confinement on the magnetic relaxation of iron oxide (Fe3O4) nanoparticles (NP) was investigated by measuring the hyperthermia heating behavior in high frequency alternating magnetic field. Three different Fe3O4 nanoparticle systems having distinct nanoparticle configurations were studied in terms of magnetic hyperthermia heating rate and DC magnetization, All magnetic nanoparticle (MNP) systems were constructed using equivalent similar to 10 nm diameter NP that were structured differently in terms of configuration, physical confinement, and interparticle spacing. The spatial confinement was achieved by embedding the Fe3O4 nanoparticles in the matrices of the polystyrene spheres of 100 nm, while the unconfined was the free Fe3O4 nanoparticles well-dispersed in the liquid via PAA surface coating. Assuming the identical core MNPs in each system, the heating behavior was analyzed in terms of particle freedom (or confinement), interparticle spacing, and magnetic coupling (or dipole-dipole interaction). DC magnetization data were correlated to the heating behavior with different material properties. Analysis of DC magnetization measurements showed deviation from classical Langevin behavior near saturation due to dipole interaction modification of the MNPs resulting in a high magnetic anisotropy. It was found that the Specific Absorption Rate (SAR) of the unconfined nanoparticle systems were significantly higher than those of confined (the MNPs embedded in the polystyrene matrix). This increase of SAR was found to be attributable to high Neel relaxation rate and hysteresis loss of the unconfined MNPs. It was also found that the dipole-dipole interactions can significantly reduce the global magnetic response of the MNPs and thereby decrease the SAR of the nanoparticle systems. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:52 / 63
页数:12
相关论文
共 50 条
  • [11] The effect of interparticle interactions on spin glass and hyperthermia properties of Fe3O4 nanoparticles
    Aslibeiki, B.
    Ehsani, M. H.
    Nasirzadeh, F.
    Mohammadi, M. A.
    MATERIALS RESEARCH EXPRESS, 2017, 4 (07):
  • [12] Thermo-magnetic stability of magnetic Fe3O4 nanoparticles for hyperthermia
    Pan, Y. M.
    Zhang, W.
    Hu, Z. F.
    Feng, Z. Y.
    Zhang, X. P.
    MATERIALS SCIENCE-POLAND, 2020, 38 (04): : 637 - 643
  • [13] RGD-Functionalized Fe3O4 nanoparticles for magnetic hyperthermia
    Arriortua, Oihane K.
    Insausti, Maite
    Lezama, Luis
    Gil de Muro, Izaskun
    Garaio, Eneko
    de la Fuente, Jesus Martinez
    Fratila, Raluca M.
    Morales, Maria P.
    Costa, Rocio
    Eceiza, Maite
    Sagartzazu-Aizpurua, Maialen
    Aizpurua, Jesus M.
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2018, 165 : 315 - 324
  • [14] Immobilization of protein on Fe3O4 nanoparticles for magnetic hyperthermia application
    Gawali, Santosh L.
    Shelar, Sandeep B.
    Gupta, Jagriti
    Barick, K. C.
    Hassan, P. A.
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2021, 166 : 851 - 860
  • [15] Size dependent magnetic hyperthermia of octahedral Fe3O4 nanoparticles
    Lv, Y.
    Yang, Y.
    Fang, J.
    Zhang, H.
    Peng, E.
    Liu, X.
    Xiao, W.
    Ding, J.
    RSC ADVANCES, 2015, 5 (94) : 76764 - 76771
  • [16] SYNTHESIS AND CHARACTERAIZATION OF Fe3O4 NANOPARTICLES FOR MAGNETIC HYPERTHERMIA APPLICATION
    Ramesh, R.
    Ponnusamy, S.
    Muthamizhchelvan, C.
    INTERNATIONAL CONFERENCE ON MAGNETIC MATERIALS (ICMM-2010), 2010, 1347 : 19 - 22
  • [17] Effect of Gd substitution on structure, optical and magnetic properties, and heating efficiency of Fe3O4 nanoparticles for magnetic hyperthermia applications
    Nguyen, Luu Huu
    Nam, Nguyen Hoai
    Tam, Le The
    Van Tuan, Dinh
    Truong, Nguyen Xuan
    Van Quynh, Nguyen
    Tuyet, Phan Thi Hong
    Thu, Ha Phuong
    Manh, Do Hung
    Phong, Pham Thanh
    Nam, Pham Hong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 968
  • [18] Functionalization-induced improvement in magnetic properties of Fe3O4 nanoparticles for biomedical applications
    Nagesha, Dattatri K.
    Plouffe, Brian D.
    Phan, Minh
    Lewis, Laura H.
    Sridhar, Srinivas
    Murthy, Shashi K.
    JOURNAL OF APPLIED PHYSICS, 2009, 105 (07)
  • [19] Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications
    Cheng, FY
    Su, CH
    Yang, YS
    Yeh, CS
    Tsai, CY
    Wu, CL
    Wu, MT
    Shieh, DB
    BIOMATERIALS, 2005, 26 (07) : 729 - 738
  • [20] Synthesis and Characterization of Fe3O4 Nanoparticles with Perspectives in Biomedical Applications
    Mamani, Javier Bustamante
    Gamarra, Lionel Fernel
    de Souza Brito, Giancarlo Esposito
    MATERIALS RESEARCH-IBERO-AMERICAN JOURNAL OF MATERIALS, 2014, 17 (03): : 542 - 549