Van der Corput inequalities for Bessel functions

被引:1
|
作者
Baricz, Arpad [1 ,2 ]
Laforgia, Andrea [3 ]
Pogany, Tibor K. [2 ,4 ]
机构
[1] Univ Babes Bolyai, Dept Econ, Cluj Napoca 400591, Romania
[2] Obuda Univ, John von Neumann Fac Informat, Inst Appl Math, H-1034 Budapest, Hungary
[3] Roma Tre Univ, Dept Math, I-00146 Rome, Italy
[4] Univ Rijeka, Fac Maritime Studies, Rijeka 51000, Croatia
关键词
Bessel functions of the first kind; log-convexity; trigonometricand hyperbolic functions; modified Bessel functions of the first and second kinds; van der Corput inequality; probability density functions; 39B72; 26A51; 26D07; 33C10; 1ST KIND; RATIOS;
D O I
10.1080/10652469.2014.975419
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, we offer some log-concavity properties of certain functions related to Bessel functions of the first kind and modified Bessel functions of the first and second kinds, by solving partially a recent conjecture on the log-convexity/log-concavity properties for modified Bessel functions of the first kind and their derivatives. Moreover, we give an application of the mentioned results by extending two inequalities of van der Corput to Bessel and modified Bessel functions of the first kind. Similar inequalities are proved also for modified Bessel functions of the second kind, as well as for log-concave probability density functions.
引用
收藏
页码:78 / 87
页数:10
相关论文
共 50 条
  • [21] Ergodic characterization of van der Corput sets
    Marina Ninčević
    Braslav Rabar
    Siniša Slijepčević
    Archiv der Mathematik, 2012, 98 : 355 - 360
  • [22] ON VAN DER CORPUT PROPERTY OF SHIFTED PRIMES
    Slijepcevic, Sinisa
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2013, 48 (01) : 37 - 50
  • [23] On the distribution of the van der Corput sequence in arbitrary base
    Borda, Bence
    MONATSHEFTE FUR MATHEMATIK, 2017, 183 (04): : 563 - 586
  • [24] MULTIDIMENSIONAL VAN DER CORPUT-TYPE ESTIMATES INVOLVING MITTAG-LEFFLER FUNCTIONS
    Ruzhansky, Michael
    Torebek, Berikbol T.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2020, 23 (06) : 1663 - 1677
  • [25] Fibonacci, Van der Corput and Riesz-Nagy
    Bibiloni, Lluis
    Paradis, Jaume
    Viader, Pelegri
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 362 (02) : 401 - 414
  • [26] Van der Corput sets with respect to compact groups
    Michael Kelly
    Thái Hoàng Lê
    Archiv der Mathematik, 2018, 110 : 343 - 349
  • [27] Determination of a van der Corput Landau absolute constant
    Kershner, R
    AMERICAN JOURNAL OF MATHEMATICS, 1935, 57 : 840 - 846
  • [28] 关于Van der Corput不等式
    胡克
    数学杂志, 2003, (01) : 126 - 128
  • [29] Van der Corput lemmas for Mittag-Leffler functions. II. α-directions
    Ruzhansky, Michael
    Torebek, Berikbol T.
    BULLETIN DES SCIENCES MATHEMATIQUES, 2021, 171
  • [30] Multidimensional van der Corput-Type Estimates Involving Mittag-Leffler Functions
    Michael Ruzhansky
    Berikbol T. Torebek
    Fractional Calculus and Applied Analysis, 2020, 23 : 1663 - 1677