MULTIDIMENSIONAL VAN DER CORPUT-TYPE ESTIMATES INVOLVING MITTAG-LEFFLER FUNCTIONS

被引:5
|
作者
Ruzhansky, Michael [1 ,2 ]
Torebek, Berikbol T. [1 ,3 ,4 ]
机构
[1] Univ Ghent, Dept Math Anal Log & Discrete Math, Krijgslaan 281,Bldg S8, B-9000 Ghent, Belgium
[2] Queen Mary Univ London, Sch Math Sci, London, England
[3] Al Farabi Kazakh Natl Univ, 71 Al Farabi Ave, Alma Ata 050040, Kazakhstan
[4] Inst Math & Math Modeling, 125 Pushkin Str, Alma Ata 050010, Kazakhstan
基金
英国工程与自然科学研究理事会;
关键词
van der Corput-type estimates; Mittag-Leffler function; time-fractional Schrodinger equation; time-fractional Klein-Gordon equation; BESSEL;
D O I
10.1515/fca-2020-0082
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper is devoted to study multidimensional van der Corput-type estimates for the intergrals involving Mittag-Leffler functions. The generalisation is that we replace the exponential function with the Mittag-Leffler-type function, to study multidimensional oscillatory integrals appearing in the analysis of time-fractional evolution equations. More specifically, we study two types of integrals with functions E-alpha,E-beta(i lambda phi(x)), x is an element of R-N and E-alpha,E-beta(i(alpha)lambda phi(x)), x is an element of R-N for the various range of alpha and beta. Several generalisations of the van der Corput-type estimates are proved. As an application of the above results, the Cauchy problem for the multidimensional time-fractional Klein-Gordon and time-fractional Schrodinger equations are considered.
引用
收藏
页码:1663 / 1677
页数:15
相关论文
共 50 条
  • [1] Multidimensional van der Corput-Type Estimates Involving Mittag-Leffler Functions
    Michael Ruzhansky
    Berikbol T. Torebek
    Fractional Calculus and Applied Analysis, 2020, 23 : 1663 - 1677
  • [2] Van der Corput lemmas for Mittag-Leffler functions. I
    Ruzhansky, Michael
    Torebek, Berikbol T.
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2024, 43 (3-4): : 349 - 376
  • [3] Van der Corput lemmas for Mittag-Leffler functions. II. α-directions
    Ruzhansky, Michael
    Torebek, Berikbol T.
    BULLETIN DES SCIENCES MATHEMATIQUES, 2021, 171
  • [4] Estimates for Integrals with Mittag-Leffler Functions
    Ikromov, Isroil A.
    Safarov, Akbar R.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2024, 45 (08) : 3884 - 3896
  • [5] On Euler Type Integrals Involving Extended Mittag-Leffler Functions
    Joshi, Sunil
    Mittal, Ekta
    Pandey, Rupakshi Mishra
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2020, 38 (02): : 125 - 134
  • [6] On zeros of functions of Mittag-Leffler type
    Sedletskii, AM
    MATHEMATICAL NOTES, 2000, 68 (5-6) : 602 - 613
  • [7] On the generalized Mittag-Leffler type functions
    Gorenflo, R
    Kilbas, AA
    Rogosin, SV
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 1998, 7 (3-4) : 215 - 224
  • [8] A van der Corput-type lemma for power bounded operators
    A. F. M. ter Elst
    V. Müller
    Mathematische Zeitschrift, 2017, 285 : 143 - 158
  • [9] A van der Corput-type lemma for power bounded operators
    ter Elst, A. F. M.
    Mueller, V.
    MATHEMATISCHE ZEITSCHRIFT, 2017, 285 (1-2) : 143 - 158
  • [10] Certain Integrals Involving Generalized Mittag-Leffler Functions
    P. Agarwal
    M. Chand
    S. Jain
    Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2015, 85 : 359 - 371