Nonlinear semiparametric AR(1) model with skew-symmetric innovations

被引:8
|
作者
Hajrajabi, Arezo [1 ]
Fallah, Afshin [1 ]
机构
[1] Imam Khomeini Int Univ, Fac Basic Sci, Qazvin, Iran
关键词
Autoregressive model; EM algorithm; Maximum likelihood; Semiparametric estimation; Skew normal innovations; TIME-SERIES MODEL;
D O I
10.1080/03610918.2017.1315772
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we expand a first-order nonlinear autoregressive (AR) model with skew normal innovations. A semiparametric method is proposed to estimate a nonlinear part of model by using the conditional least squares method for parametric estimation and the nonparametric kernel approach for the AR adjustment estimation. Then computational techniques for parameter estimation are carried out by the maximum likelihood (ML) approach using Expectation-Maximization (EM) type optimization and the explicit iterative form for the ML estimators are obtained. Furthermore, in a simulation study and a real application, the accuracy of the proposed methods is verified.
引用
收藏
页码:1453 / 1462
页数:10
相关论文
共 50 条