Autoregressive model;
EM algorithm;
Maximum likelihood;
Semiparametric estimation;
Skew normal innovations;
TIME-SERIES MODEL;
D O I:
10.1080/03610918.2017.1315772
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
In this paper, we expand a first-order nonlinear autoregressive (AR) model with skew normal innovations. A semiparametric method is proposed to estimate a nonlinear part of model by using the conditional least squares method for parametric estimation and the nonparametric kernel approach for the AR adjustment estimation. Then computational techniques for parameter estimation are carried out by the maximum likelihood (ML) approach using Expectation-Maximization (EM) type optimization and the explicit iterative form for the ML estimators are obtained. Furthermore, in a simulation study and a real application, the accuracy of the proposed methods is verified.
机构:
Univ Sao Paulo, Inst Matemat & Estatist, Sao Paulo, Brazil
Sobolev Inst Math, Novosibirsk, RussiaUniv Sao Paulo, Inst Matemat & Estatist, Sao Paulo, Brazil
Shestakov, Ivan
Zhukavets, Natalia
论文数: 0引用数: 0
h-index: 0
机构:
Czech Tech Univ, Fac Elect Engn, CR-16635 Prague, Czech RepublicUniv Sao Paulo, Inst Matemat & Estatist, Sao Paulo, Brazil