Adaptive integrate-and-fire model reproduces the dynamics of olfactory receptor neuron responses in a moth

被引:6
|
作者
Levakova, Marie [1 ]
Kostal, Lubomir [1 ]
Monsempes, Christelle [2 ]
Lucas, Philippe [2 ]
Kobayashi, Ryota [3 ,4 ]
机构
[1] Czech Acad Sci, Inst Physiol, Dept Computat Neurosci, Videnska 1083, Prague 14220 4, Czech Republic
[2] INRA, Inst Ecol & Environm Sci, Route St Cyr, F-78000 Versailles, France
[3] Natl Inst Informat, Principles Informat Res Div, Chiyoda Ku, 2-1-2 Hitotsubashi, Tokyo, Japan
[4] Grad Univ Adv Studies, Dept Informat, SOKENDAI, Chiyoda Ku, 2-1-2 Hitotsubashi, Tokyo, Japan
关键词
olfactory receptor neuron; integrate-and-fire model; adaptive threshold; ADAPTATION; EVENTS; MECHANISMS; INTENSITY; CURRENTS; PERIRECEPTOR; COMPUTATION; POPULATION; NETWORKS;
D O I
10.1098/rsif.2019.0246
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In order to understand how olfactory stimuli are encoded and processed in the brain, it is important to build a computational model for olfactory receptor neurons (ORNs). Here, we present a simple and reliable mathematical model of a moth ORN generating spikes. The model incorporates a simplified description of the chemical kinetics leading to olfactory receptor activation and action potential generation. We show that an adaptive spike threshold regulated by prior spike history is an effective mechanism for reproducing the typical phasic-tonic time course of ORN responses. Our model reproduces the response dynamics of individual neurons to a fluctuating stimulus that approximates odorant fluctuations in nature. The parameters of the spike threshold are essential for reproducing the response heterogeneity in ORNs. The model provides a valuable tool for efficient simulations of olfactory circuits.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Chaotic solutions in the quadratic integrate-and-fire neuron with adaptation
    Zheng, Gang
    Tonnelier, Arnaud
    COGNITIVE NEURODYNAMICS, 2009, 3 (03) : 197 - 204
  • [42] Neuron firing in driven nonlinear integrate-and-fire models
    Kostur, Marcin
    Schindler, Michael
    Talkner, Peter
    Haenggi, Peter
    MATHEMATICAL BIOSCIENCES, 2007, 207 (02) : 302 - 311
  • [43] Time encoding with an integrate-and-fire neuron with a refractory period
    Lazar, AA
    NEUROCOMPUTING, 2004, 58 : 53 - 58
  • [44] Dynamics of the exponential integrate-and-fire model with slow currents and adaptation
    Barranca, Victor J.
    Johnson, Daniel C.
    Moyher, Jennifer L.
    Sauppe, Joshua P.
    Shkarayev, Maxim S.
    Kovacic, Gregor
    Cai, David
    JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2014, 37 (01) : 161 - 180
  • [45] A quantum leaky integrate-and-fire spiking neuron and network
    Brand, Dean
    Petruccione, Francesco
    NPJ QUANTUM INFORMATION, 2024, 10 (01)
  • [46] Low-Cost Adaptive Exponential Integrate-and-Fire Neuron Using Stochastic Computing
    Xiao, Shanlin
    Liu, Wei
    Guo, Yuhao
    Yu, Zhiyi
    IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2020, 14 (05) : 942 - 950
  • [47] Bistability in a Leaky Integrate-and-Fire Neuron with a Passive Dendrite
    Schwemmer, Michael A.
    Lewis, Timothy J.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2012, 11 (01): : 507 - 539
  • [48] Dynamics of the exponential integrate-and-fire model with slow currents and adaptation
    Victor J. Barranca
    Daniel C. Johnson
    Jennifer L. Moyher
    Joshua P. Sauppe
    Maxim S. Shkarayev
    Gregor Kovačič
    David Cai
    Journal of Computational Neuroscience, 2014, 37 : 161 - 180
  • [49] Linear response theory of stochastic resonance in a leaky integrate-and-fire neuron model
    Shimokawa, T
    Oka, T
    Sato, S
    IEEE EMBS APBME 2003, 2003, : 330 - 331
  • [50] Complex behavior in an integrate-and-fire neuron model based on small world networks
    Lin, M
    Chen, TL
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2005, 44 (02) : 311 - 315