Adaptive integrate-and-fire model reproduces the dynamics of olfactory receptor neuron responses in a moth

被引:6
|
作者
Levakova, Marie [1 ]
Kostal, Lubomir [1 ]
Monsempes, Christelle [2 ]
Lucas, Philippe [2 ]
Kobayashi, Ryota [3 ,4 ]
机构
[1] Czech Acad Sci, Inst Physiol, Dept Computat Neurosci, Videnska 1083, Prague 14220 4, Czech Republic
[2] INRA, Inst Ecol & Environm Sci, Route St Cyr, F-78000 Versailles, France
[3] Natl Inst Informat, Principles Informat Res Div, Chiyoda Ku, 2-1-2 Hitotsubashi, Tokyo, Japan
[4] Grad Univ Adv Studies, Dept Informat, SOKENDAI, Chiyoda Ku, 2-1-2 Hitotsubashi, Tokyo, Japan
关键词
olfactory receptor neuron; integrate-and-fire model; adaptive threshold; ADAPTATION; EVENTS; MECHANISMS; INTENSITY; CURRENTS; PERIRECEPTOR; COMPUTATION; POPULATION; NETWORKS;
D O I
10.1098/rsif.2019.0246
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In order to understand how olfactory stimuli are encoded and processed in the brain, it is important to build a computational model for olfactory receptor neurons (ORNs). Here, we present a simple and reliable mathematical model of a moth ORN generating spikes. The model incorporates a simplified description of the chemical kinetics leading to olfactory receptor activation and action potential generation. We show that an adaptive spike threshold regulated by prior spike history is an effective mechanism for reproducing the typical phasic-tonic time course of ORN responses. Our model reproduces the response dynamics of individual neurons to a fluctuating stimulus that approximates odorant fluctuations in nature. The parameters of the spike threshold are essential for reproducing the response heterogeneity in ORNs. The model provides a valuable tool for efficient simulations of olfactory circuits.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Adaptive exponential integrate-and-fire model with fractal extension
    Souza, Diogo L. M.
    Gabrick, Enrique C.
    Protachevicz, Paulo R.
    Borges, Fernando S.
    Trobia, Jose
    Iarosz, Kelly C.
    Batista, Antonio M.
    Caldas, Ibere L.
    Lenzi, Ervin K.
    CHAOS, 2024, 34 (02)
  • [22] Firing patterns in the adaptive exponential integrate-and-fire model
    Richard Naud
    Nicolas Marcille
    Claudia Clopath
    Wulfram Gerstner
    Biological Cybernetics, 2008, 99 : 335 - 347
  • [23] Firing patterns in the adaptive exponential integrate-and-fire model
    Naud, Richard
    Marcille, Nicolas
    Clopath, Claudia
    Gerstner, Wulfram
    BIOLOGICAL CYBERNETICS, 2008, 99 (4-5) : 335 - 347
  • [24] Shot noise in the leaky integrate-and-fire neuron
    Hohn, N
    Burkitt, AN
    PHYSICAL REVIEW E, 2001, 63 (03): : 031902 - 031902
  • [25] Simulating leaky integrate-and-fire neuron with integers
    Vidybida, A. K.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2019, 159 : 154 - 160
  • [26] Learning with single quadratic integrate-and-fire neuron
    Mishra, Deepak
    Yadav, Abhishek
    Kalra, Prem K.
    ADVANCES IN NEURAL NETWORKS - ISNN 2006, PT 1, 2006, 3971 : 424 - 429
  • [27] Threshold-varying integrate-and-fire model reproduces distributions of spontaneous blink intervals
    Nomura, Ryota
    Liang, Ying-Zong
    Morita, Kenji
    Fujiwara, Kantaro
    Ikeguchi, Tohru
    PLOS ONE, 2018, 13 (10):
  • [28] Simplicity and Efficiency of Integrate-and-Fire Neuron Models
    Plesser, Hans E.
    Diesmann, Markus
    NEURAL COMPUTATION, 2009, 21 (02) : 353 - 359
  • [29] The Morris-Lecar neuron model embeds a leaky integrate-and-fire model
    Ditlevsen, Susanne
    Greenwood, Priscilla
    JOURNAL OF MATHEMATICAL BIOLOGY, 2013, 67 (02) : 239 - 259
  • [30] PERIODICALLY FORCED PIECEWISE-LINEAR ADAPTIVE EXPONENTIAL INTEGRATE-AND-FIRE NEURON
    Shiau, Liejune
    Laing, Carlo R.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (10):