Single-Crystalline Hexagonal Silicon-Germanium

被引:64
|
作者
Hauge, Hakon Ikaros T. [1 ]
Conesa-Boj, Sonia [1 ,3 ]
Verheijen, Marcel A. [1 ,2 ]
Koelling, Sebastian [1 ]
Bakkers, Erik P. A. M. [1 ,3 ]
机构
[1] Eindhoven Univ Technol, Dept Appl Phys, NL-5600 MB Eindhoven, Netherlands
[2] Philips Innovat Labs, High Tech Campus 11, NL-5656 AE Eindhoven, Netherlands
[3] Delft Univ Technol, Kavli Inst Nanosci, NL-2628 CJ Delft, Netherlands
基金
欧洲研究理事会;
关键词
Silicon-germanium; hexagonal crystal structure; core/shell nanowire; single-crystalline; growth rate; kinetics; BAND-STRUCTURE; ELECTRONIC-PROPERTIES; SIGE; GE; DIFFUSION; NANOWIRES; GROWTH; STRAIN; DECOMPOSITION; DESORPTION;
D O I
10.1021/acs.nanolett.6b03488
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Group IV materials with the hexagonal diamond crystal structure have been predicted to exhibit promising optical and electronic properties. In particular; hexagonal silicon germanium (Si1-xGex) should be characterized by a tunable direct band gap with implications ranging from Si-based light-emitting diodes to lasers and quantum, dots for single photon emitters. Here we demonstrate the feasibility of high-quality defect-free and wafer-scale hexagonal Si1-xGex growth with precise control of the alloy composition and layer thickness. This is achieved by transferring the hexagonal phase from a GaP/Si core/shell nanowire template, the same method successfully employed by us to realize hexagonal Si. We determine the optimal growth conditions in order to achieve single crystalline layer-by-layer Si1-xGex growth in the preferred stoichiometry region. Our results pave the way for exploiting the novel properties of hexagonal Si1-xGex alloys in technological applications.
引用
收藏
页码:85 / 90
页数:6
相关论文
共 50 条
  • [31] On the role of germanium in porous silicon-germanium luminescence
    Amato, G
    Rossi, AM
    Boarino, L
    Brunetto, N
    PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1997, 76 (03): : 395 - 403
  • [32] Silicon-germanium nanostructures with high germanium concentration
    Sadofyev Y.G.
    Martovitsky V.P.
    Bazalevsky M.A.
    Bulletin of the Russian Academy of Sciences: Physics, 2014, 78 (01) : 29 - 33
  • [33] AMORPHOUS SILICON-GERMANIUM ALLOYS
    WAGNER, S
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1987, 134 (8B) : C444 - C444
  • [34] RF Silicon-Germanium circuits
    Bopp, M
    EDMO 2001: INTERNATIONAL SYMPOSIUM ON ELECTRON DEVICES FOR MICROWAVE AND OPTOELECTRONIC APPLICATIONS, 2001, : 167 - 173
  • [35] Silicon-germanium materials and devices
    Maiti, CK
    SOLID-STATE ELECTRONICS, 2001, 45 (11) : 1867 - 1868
  • [36] Silicon-Germanium: The Legacy Lives On
    Cook, Bruce
    ENERGIES, 2022, 15 (08)
  • [37] OXIDATION OF SILICON-GERMANIUM ALLOYS
    MARGALIT, S
    BARLEV, A
    AHARONI, H
    NEUGROSCHEL, A
    KUPER, AB
    JOURNAL OF CRYSTAL GROWTH, 1972, 17 (DEC) : 288 - +
  • [38] REACTION OF TITANIUM WITH GERMANIUM AND SILICON-GERMANIUM ALLOYS
    THOMAS, O
    DELAGE, S
    DHEURLE, FM
    SCILLA, G
    APPLIED PHYSICS LETTERS, 1989, 54 (03) : 228 - 230
  • [39] Silicon-germanium process technology
    Subbanna, S
    Ahlgren, D
    Harame, D
    Meyerson, B
    SILICON MATERIALS SCIENCE AND TECHNOLOGY, VOLS 1 AND 2, 1998, : 1406 - 1417
  • [40] EPITAXIAL-GROWTH OF SILICON-GERMANIUM SINGLE-CRYSTALS
    AHARONI, H
    BARLEV, A
    BLECH, IA
    MARGALIT, S
    THIN SOLID FILMS, 1972, 11 (02) : 313 - &