Multifractal spectra of certain random Gibbs measures

被引:5
|
作者
Fan, AH
Shieh, NR
机构
[1] Univ Picardie, Dept Math, F-80039 Amiens 1, France
[2] Natl Taiwan Univ, Dept Math, Taipei 10764, Taiwan
关键词
Gibbs measure; pressure function; multifractal spectrum;
D O I
10.1016/S0167-7152(99)00133-9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a random Gibbs measure mu(d eta, omega) generated by a certain sequence of random functions g(n)(eta, omega) on the configuration space of one-dimensional system of lattice particles. Under concrete conditions, we prove that, for almost sure omega, mu(d eta, omega) has a non-random non-trivial multifractal spectrum. The basic idea is to relate our situation to random matrix products discussed in Ruelle (1979, Adv. Math. 32, 68-80). (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:25 / 31
页数:7
相关论文
共 50 条
  • [41] Symmetry relations for multifractal spectra at random critical points
    Monthus, Cecile
    Berche, Bertrand
    Chatelain, Christophe
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2009,
  • [42] Exact multifractal spectra for arbitrary Laplacian random walks
    Hastings, MB
    PHYSICAL REVIEW LETTERS, 2002, 88 (05) : 4
  • [43] Efficient approximation of branching random walk Gibbs measures
    Ho, Fu-Hsuan
    Maillard, Pascal
    ELECTRONIC JOURNAL OF PROBABILITY, 2022, 27
  • [44] Limits of discrete distributions and Gibbs measures on random graphs
    Coja-Oghlan, A.
    Perkins, W.
    Skubch, K.
    EUROPEAN JOURNAL OF COMBINATORICS, 2017, 66 : 37 - 59
  • [45] Constant-Length Random Substitutions and Gibbs Measures
    Maldonado, C.
    Trejo-Valencia, L.
    Ugalde, E.
    JOURNAL OF STATISTICAL PHYSICS, 2018, 171 (02) : 269 - 287
  • [46] Gibbs measures and phase transitions on sparse random graphs
    Dembo, Amir
    Montanani, Andrea
    BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2010, 24 (02) : 137 - 211
  • [47] Gibbs measures and Markov random fields with association I
    Rakhmatullaev, AM
    Rozikov, UA
    MATHEMATICAL NOTES, 2002, 72 (1-2) : 83 - 89
  • [48] Constant-Length Random Substitutions and Gibbs Measures
    C. Maldonado
    L. Trejo-Valencia
    E. Ugalde
    Journal of Statistical Physics, 2018, 171 : 269 - 287
  • [49] Non-lacunary Gibbs Measures for Certain Fractal Repellers
    Horita, Vanderlei
    Oliveira, Krerley
    JOURNAL OF STATISTICAL PHYSICS, 2009, 136 (05) : 842 - 863
  • [50] Weak Gibbs measures for certain non-hyperbolic systems
    Yuri, M
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2000, 20 : 1495 - 1518