Fast modulo 2n-1 and 2n+1 adder using carry-chain on FPGA

被引:0
|
作者
Didier, Laurent-Stephane [1 ]
Jaulmes, Luc [2 ]
机构
[1] Univ Toulon & Var, Lab IMATH, La Garde, France
[2] Univ Politecn Cataluna, CNS, Barcelona Supercomp Ctr, Barcelona, Spain
关键词
Modular adder; carry-chain; FPGA; RNS; 2(n)-1 and 2(n)+1 moduli; MULTIPLICATION; IMPLEMENTATION; DESIGN;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Modular addition is a widely used operation in Residue Number System applications. Specific sets of moduli allow fast RNS operations such as binary conversions and multiplications. Most of them use modulo 2(n) - 1 and 2(n) + 1 additions. This paper presents four fast and small architectures for these specific moduli targeting modern FPGAs with fast carry chains. The use of this arithmetic dedicated feature allows fast and small modular adders. Our modulo 2(n) - 1 adders have a single zero representation. Our modulo 2(n) + 1 adders are designed for binary and diminished-one representation with and without zero value management.
引用
收藏
页码:1155 / 1159
页数:5
相关论文
共 50 条
  • [31] Novel modulo 2n+1 multipliers
    Vergos, H. T.
    Efstathiou, C.
    DSD 2006: 9TH EUROMICRO CONFERENCE ON DIGITAL SYSTEM DESIGN: ARCHITECTURES, METHODS AND TOOLS, PROCEEDINGS, 2006, : 168 - +
  • [32] NOVEL MODULO 2n+1 SUBTRACTORS
    Vassalos, E.
    Bakalis, D.
    Vergos, H. T.
    2009 16TH INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING, VOLS 1 AND 2, 2009, : 597 - +
  • [33] Efficient Modulo 2n+1 Multipliers
    Chen, Jian Wen
    Yao, Ruo He
    Wu, Wei Jing
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2011, 19 (12) : 2149 - 2157
  • [34] Residue adder design for the modulo set {2n-1; 2n; 2n+1-1} and its application in DCT architecture for HEVC
    Kopperundevi, P.
    Prakash, M. Surya
    2022 IEEE 3RD INTERNATIONAL CONFERENCE ON VLSI SYSTEMS, ARCHITECTURE, TECHNOLOGY AND APPLICATIONS, VLSI SATA, 2022,
  • [35] Breaking the 2n-bit carry propagation barrier in residue to binary conversion for the [2n-1, 2n, 2n+1] modula set
    Bhardwaj, M
    Premkumar, AB
    Srikanthan, T
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1998, 45 (09): : 998 - 1002
  • [36] Algorithm for modulo (2n+1) multiplication
    Sousa, LA
    ELECTRONICS LETTERS, 2003, 39 (09) : 752 - 754
  • [37] DESIGN OF MULTIOPERAND CARRY-SAVE ADDERS FOR ARITHMETIC MODULO (2N+1)
    SKAVANTZOS, A
    ELECTRONICS LETTERS, 1989, 25 (17) : 1152 - 1153
  • [38] Fully parallel comparator for the moduli set {2n, 2n-1, 2n+1}
    Eivazi, Shiva Taghipour
    Hosseinzadeh, Mehdi
    Mirmotahari, Omid
    IEICE ELECTRONICS EXPRESS, 2011, 8 (12): : 897 - 901
  • [39] Simple, Fast, and Exact RNS Scaler for the Three-Moduli Set {2n-1, 2n, 2n+1}
    Chang, Chip-Hong
    Low, Jeremy Yung Shern
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2011, 58 (11) : 2686 - 2697
  • [40] MRC-Based RNS Reverse Converters for the Four-Moduli Sets {2n+1, 2n-1, 2n, 22n+1-1} and {2n+1, 2n-1, 22n, 22n+1-1}
    Sousa, Leonel
    Antao, Samuel
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2012, 59 (04) : 244 - 248