Leveraging SE(3) Equivariance for Self-Supervised Category-Level Object Pose Estimation

被引:0
|
作者
Li, Xiaolong [1 ]
Weng, Yijia [2 ]
Yi, Li [3 ]
Guibas, Leonidas [4 ]
Abbott, A. Lynn [1 ]
Song, Shuran [5 ]
Wang, He [2 ]
机构
[1] Virginia Tech, Blacksburg, VA USA
[2] Peking Univ, Beijing, Peoples R China
[3] Tsinghua Univ, Beijing, Peoples R China
[4] Stanford Univ, Stanford, CA 94305 USA
[5] Columbia Univ, New York, NY 10027 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Category-level object pose estimation aims to find 6D object poses of previously unseen object instances from known categories without access to object CAD models. To reduce the huge amount of pose annotations needed for category-level learning, we propose for the first time a self-supervised learning framework to estimate category-level 6D object pose from single 3D point clouds. During training, our method assumes no ground-truth pose annotations, no CAD models, and no multi-view supervision. The key to our method is to disentangle shape and pose through an invariant shape reconstruction module and an equivariant pose estimation module, empowered by SE(3) equivariant point cloud networks. The invariant shape reconstruction module learns to perform aligned reconstructions, yielding a category-level reference frame without using any annotations. In addition, the equivariant pose estimation module achieves category-level pose estimation accuracy that is comparable to some fully supervised methods. Extensive experiments demonstrate the effectiveness of our approach on both complete and partial depth point clouds from the ModelNet40 benchmark, and on real depth point clouds from the NOCS-REAL 275 dataset. The project page with code and visualizations can be found at: dragonlong.github.io/equi-pose.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] LaPose: Laplacian Mixture Shape Modeling for RGB-Based Category-Level Object Pose Estimation
    Zhang, Ruida
    Huang, Ziqin
    Wang, Gu
    Zhang, Chenyangguang
    Die, Yan
    Zuo, Xingxing
    Tang, Jiwen
    Ji, Xiangyang
    COMPUTER VISION - ECCV 2024, PT XXV, 2025, 15083 : 467 - 484
  • [42] CLIPose: Category-Level Object Pose Estimation With Pre-Trained Vision-Language Knowledge
    Lin, Xiao
    Zhu, Minghao
    Dang, Ronghao
    Zhou, Guangliang
    Shu, Shaolong
    Lin, Feng
    Liu, Chengju
    Chen, Qijun
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (10) : 9125 - 9138
  • [43] Category-Level 6-D Object Pose Estimation With Shape Deformation for Robotic Grasp Detection
    Yu, Sheng
    Zhai, Di-Hua
    Guan, Yuyin
    Xia, Yuanqing
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2025, 36 (01) : 1857 - 1871
  • [44] GPT-COPE: A Graph-Guided Point Transformer for Category-Level Object Pose Estimation
    Zou, Lu
    Huang, Zhangjin
    Gu, Naijie
    Wang, Guoping
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (04) : 2385 - 2398
  • [45] Keypoint-Based Category-Level Object Pose Tracking from an RGB Sequence with Uncertainty Estimation
    Lin, Yunzhi
    Tremblay, Jonathan
    Tyree, Stephen
    Vela, Patricio A.
    Birchfield, Stan
    2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2022), 2022,
  • [46] RBP-Pose: Residual Bounding Box Projection for Category-Level Pose Estimation
    Zhang, Ruida
    Di, Yan
    Lou, Zhiqiang
    Manhardi, Fabian
    Tombari, Federico
    Ji, Xiangyang
    COMPUTER VISION - ECCV 2022, PT I, 2022, 13661 : 655 - 672
  • [47] PhoCaL: A Multi-Modal Dataset for Category-Level Object Pose Estimation with Photometrically Challenging Objects
    Wang, Pengyuan
    Jung, HyunJun
    Li, Yitong
    Shen, Siyuan
    Srikanth, Rahul Parthasarathy
    Garattoni, Lorenzo
    Meier, Sven
    Navab, Nassir
    Busam, Benjamin
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 21190 - 21199
  • [48] You Only Look at One: Category-Level Object Representations for Pose Estimation From a Single Example
    Goodwin, Walter
    Havoutis, Ioannis
    Posner, Ingmar
    CONFERENCE ON ROBOT LEARNING, VOL 205, 2022, 205 : 1435 - 1445
  • [49] Category-Level 6-D Object Pose Estimation With Shape Deformation for Robotic Grasp Detection
    Yu, Sheng
    Zhai, Di-Hua
    Guan, Yuyin
    Xia, Yuanqing
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2025, 36 (01) : 1857 - 1871
  • [50] Estimation method of category-level multi-object rigid body 6D pose
    Cheng, Shuo
    Jia, Di
    Yang, Liu
    He, Dekun
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2025, 40 (03) : 457 - 471