Leveraging SE(3) Equivariance for Self-Supervised Category-Level Object Pose Estimation

被引:0
|
作者
Li, Xiaolong [1 ]
Weng, Yijia [2 ]
Yi, Li [3 ]
Guibas, Leonidas [4 ]
Abbott, A. Lynn [1 ]
Song, Shuran [5 ]
Wang, He [2 ]
机构
[1] Virginia Tech, Blacksburg, VA USA
[2] Peking Univ, Beijing, Peoples R China
[3] Tsinghua Univ, Beijing, Peoples R China
[4] Stanford Univ, Stanford, CA 94305 USA
[5] Columbia Univ, New York, NY 10027 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Category-level object pose estimation aims to find 6D object poses of previously unseen object instances from known categories without access to object CAD models. To reduce the huge amount of pose annotations needed for category-level learning, we propose for the first time a self-supervised learning framework to estimate category-level 6D object pose from single 3D point clouds. During training, our method assumes no ground-truth pose annotations, no CAD models, and no multi-view supervision. The key to our method is to disentangle shape and pose through an invariant shape reconstruction module and an equivariant pose estimation module, empowered by SE(3) equivariant point cloud networks. The invariant shape reconstruction module learns to perform aligned reconstructions, yielding a category-level reference frame without using any annotations. In addition, the equivariant pose estimation module achieves category-level pose estimation accuracy that is comparable to some fully supervised methods. Extensive experiments demonstrate the effectiveness of our approach on both complete and partial depth point clouds from the ModelNet40 benchmark, and on real depth point clouds from the NOCS-REAL 275 dataset. The project page with code and visualizations can be found at: dragonlong.github.io/equi-pose.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] CatFormer: Category-Level 6D Object Pose Estimation with Transformer
    Yu, Sheng
    Zhai, Di-Hua
    Xia, Yuanqing
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 7, 2024, : 6808 - 6816
  • [22] RANSAC Optimization for Category-level 6D Object Pose Estimation
    Chen, Ying
    Kang, Guixia
    Wang, Yiping
    2020 5TH INTERNATIONAL CONFERENCE ON MECHANICAL, CONTROL AND COMPUTER ENGINEERING (ICMCCE 2020), 2020, : 50 - 56
  • [23] Category-Level Object Detection, Pose Estimation and Reconstruction from Stereo Images
    Zhang, Chuanrui
    Ling, Yonggen
    Lu, Minglei
    Qin, Minghan
    Wang, Haoqian
    COMPUTER VISION - ECCV 2024, PT XXXIV, 2025, 15092 : 332 - 349
  • [24] An efficient network for category-level 6D object pose estimation
    Shantong Sun
    Rongke Liu
    Shuqiao Sun
    Xinxin Yang
    Guangshan Lu
    Signal, Image and Video Processing, 2021, 15 : 1643 - 1651
  • [25] SecondPose: SE(3)-Consistent Dual-Stream Feature Fusion for Category-Level Pose Estimation
    Chen, Yamei
    Di, Yan
    Zhai, Guangyao
    Manhardt, Fabian
    Zhang, Chenyangguang
    Zhang, Ruida
    Tombari, Federico
    Navab, Nassir
    Busam, Benjamin
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2024, : 9959 - 9969
  • [26] UDA-COPE: Unsupervised Domain Adaptation for Category-level Object Pose Estimation
    Lee, Taeyeop
    Lee, Byeong-Uk
    Shin, Inkyu
    Choe, Jaesung
    Shin, Ukcheol
    Kweon, In So
    Yoon, Kuk-Jin
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 14871 - 14880
  • [27] Category-Level 6D Object Pose Estimation in the Wild: A Semi-Supervised Learning Approach and A New Dataset
    Fu, Yang
    Wang, Xiaolong
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [28] Normalized Object Coordinate Space for Category-Level 6D Object Pose and Size Estimation
    Wang, He
    Sridhar, Srinath
    Huang, Jingwei
    Valentin, Julien
    Song, Shuran
    Guibas, Leonidas J.
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 2637 - 2646
  • [29] SD-Pose: Structural Discrepancy Aware Category-Level 6D Object Pose Estimation
    Li, Guowei
    Zhu, Dongchen
    Zhang, Guanghui
    Shi, Wenjun
    Zhang, Tianyu
    Zhang, Xiaolin
    Li, Jiamao
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 5674 - 5683
  • [30] Best Next-Viewpoint Recommendation by Selecting Minimum Pose Ambiguity for Category-Level Object Pose Estimation
    Hashim N.M.Z.
    Kawanishi Y.
    Deguchi D.
    Ide I.
    Amma A.
    Kobori N.
    Murase H.
    Seimitsu Kogaku Kaishi/Journal of the Japan Society for Precision Engineering, 2021, 87 (05): : 440 - 446