MACHINE LEARNING ALGORITHM ACCURACY IN PREDICTING LYMPH NODE INVOLVEMENT IN ENDOMETRIAL CANCER

被引:0
|
作者
Cappuccio, S. [1 ]
Zanfagnin, V. [2 ]
Glaser, G. E. [1 ]
Grassi, T. [1 ]
Scambia, G. [3 ]
Hart, S. N. [4 ]
Mariani, A. [1 ]
机构
[1] Mayo Clin, Obstet & Gynecol, Rochester, MN USA
[2] Mayo Clin, Med Oncol, Rochester, MN USA
[3] Univ Cattolica Sacro Cuore, Dept Women & Child Hlth, Rochester, MN USA
[4] Mayo Clin, Hlth Sci Res, Rochester, MN USA
关键词
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
IGCS8-1026
引用
收藏
页码:1050 / 1050
页数:1
相关论文
共 50 条
  • [41] Validation of models predicting lymph node involvement probability in patients with prostate cancer
    Blas, Leandro
    Shiota, Masaki
    Nagakawa, Shohei
    Tsukahara, Shigehiro
    Matsumoto, Takashi
    Monji, Keisuke
    Kashiwagi, Eiji
    Takeuchi, Ario
    Inokuchi, Junichi
    Eto, Masatoshi
    INTERNATIONAL JOURNAL OF UROLOGY, 2022, 29 (05) : 428 - 434
  • [42] Axillary lymph node aspiration guided by ultrasound is effective as a method of predicting lymph node involvement in patients with breast cancer?
    Pessoa, Eduardo Carvalho
    Paciencia Rodrigues, Jose Ricardo
    Kamiya Carvalho Pessoa, Carla Priscila
    de Luca Vespoli, Heloisa Maria
    Uemura, Gilberto
    REVISTA BRASILEIRA DE GINECOLOGIA E OBSTETRICIA, 2014, 36 (03): : 118 - 123
  • [43] Clinical and pathologic factors predicting axillary lymph node involvement in breast cancer
    Noguchi M.
    Kurosumi M.
    Iwata H.
    Miyauchi M.
    Ohta M.
    Imoto S.
    Motomura K.
    Sato K.
    Tsugawa K.
    Breast Cancer, 2000, 7 (2) : 114 - 123
  • [44] PREDICTING LYMPH NODE INVOLVEMENT OF BREAST CANCER BY USING GENE EXPRESSION PROFILES
    Smeets, A.
    Daemen, A.
    Wildiers, H.
    Bempt, I. Vanden
    Paridaens, R.
    Christiaens, M.
    ANNALS OF ONCOLOGY, 2009, 20 : 41 - 42
  • [45] A Nomogram for predicting two or less axillary lymph node involvement for breast cancer
    Ahn, S. K.
    Kim, J. S.
    Kim, M. K.
    Lee, J. W.
    Kim, T.
    Kim, J. Y.
    Moon, H. G.
    Han, W.
    Noh, D-Y
    CANCER RESEARCH, 2012, 72
  • [46] A Clinical Nomogram Predicting Pathologic Lymph Node Involvement in Esophageal Cancer Patients
    Gaur, Puja
    Sepesi, Boris
    Hofstetter, Wayne L.
    Correa, Arlene M.
    Bhutani, Manoop S.
    Vaporciyan, Ara A.
    Watson, Thomas J.
    Swisher, Stephen G.
    ANNALS OF SURGERY, 2010, 252 (04) : 611 - 616
  • [47] Diagnostic accuracy of CT-based radiomics and deep learning for predicting lymph node metastasis in esophageal cancer
    Jannatdoust, Payam
    Valizadeh, Parya
    Pahlevan-Fallahy, Mohammad-Taha
    Hassankhani, Amir
    Amoukhteh, Melika
    Behrouzieh, Sadra
    Ghadimi, Delaram J.
    Bilgin, Cem
    Gholamrezanezhad, Ali
    CLINICAL IMAGING, 2024, 113
  • [48] Nomogram for Predicting Lymph Node Involvement in Triple-Negative Breast Cancer
    Cui, Xiang
    Zhu, Hao
    Huang, Jisheng
    FRONTIERS IN ONCOLOGY, 2020, 10
  • [49] Establishment of a machine learning model for predicting splenic hilar lymph node metastasis
    Ishizu, Kenichi
    Takahashi, Satoshi
    Kouno, Nobuji
    Takasawa, Ken
    Takeda, Katsuji
    Matsui, Kota
    Nishino, Masashi
    Hayashi, Tsutomu
    Yamagata, Yukinori
    Matsui, Shigeyuki
    Yoshikawa, Takaki
    Hamamoto, Ryuji
    NPJ DIGITAL MEDICINE, 2025, 8 (01):
  • [50] PREDICTIVE FACTORS OF LYMPH NODE INVOLVEMENT IN ENDOMETRIAL CANCER: A RETROSPECTIVE STUDY OF 44 PATIENTS
    Zemni, Ines
    Mansouri, Houyem
    Boujelbene, Nedia
    Achouri, Leila
    Yahyaoui, Safia
    Chargui, Riadh
    Rahal, Khaled
    INTERNATIONAL JOURNAL OF GYNECOLOGICAL CANCER, 2022, 32 : A112 - A113