MACHINE LEARNING ALGORITHM ACCURACY IN PREDICTING LYMPH NODE INVOLVEMENT IN ENDOMETRIAL CANCER

被引:0
|
作者
Cappuccio, S. [1 ]
Zanfagnin, V. [2 ]
Glaser, G. E. [1 ]
Grassi, T. [1 ]
Scambia, G. [3 ]
Hart, S. N. [4 ]
Mariani, A. [1 ]
机构
[1] Mayo Clin, Obstet & Gynecol, Rochester, MN USA
[2] Mayo Clin, Med Oncol, Rochester, MN USA
[3] Univ Cattolica Sacro Cuore, Dept Women & Child Hlth, Rochester, MN USA
[4] Mayo Clin, Hlth Sci Res, Rochester, MN USA
关键词
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
IGCS8-1026
引用
收藏
页码:1050 / 1050
页数:1
相关论文
共 50 条
  • [31] Lymph node management in endometrial cancer
    Owen, Clementine
    Bendifallah, Sofiane
    Jayot, Aude
    Ilenko, Anna
    Arfi, Alexandra
    Boudy, Anne Sophie
    Richard, Sandrine
    Varinot, Justine
    Thomassin-Naggara, Isabelle
    Bazot, Marc
    Darai, Emile
    BULLETIN DU CANCER, 2020, 107 (06) : 686 - 695
  • [32] Computer-Aided Segmentation and Machine Learning of Integrated Clinical and Diffusion-Weighted Imaging Parameters for Predicting Lymph Node Metastasis in Endometrial Cancer
    Yang, Lan-Yan
    Siow, Tiing Yee
    Lin, Yu-Chun
    Wu, Ren-Chin
    Lu, Hsin-Ying
    Chiang, Hsin-Ju
    Ho, Chih-Yi
    Huang, Yu-Ting
    Huang, Yen-Ling
    Pan, Yu-Bin
    Chao, Angel
    Lai, Chyong-Huey
    Lin, Gigin
    CANCERS, 2021, 13 (06) : 1 - 15
  • [33] Novel preoperative predictive score to evaluate lymphovascular space involvement in endometrial cancer: an aid to the sentinel lymph node algorithm
    Capozzi, Vito Andrea
    Sozzi, Giulio
    Uccella, Stefano
    Ceni, Valentina
    Cianciolo, Alessandra
    Gambino, Giulia
    Armano, Giulia
    Pugliese, Martina
    Scambia, Giovanni
    Chiantera, Vito
    Berretta, Roberto
    INTERNATIONAL JOURNAL OF GYNECOLOGICAL CANCER, 2020, 30 (06) : 806 - 812
  • [34] Predicting pelvic lymph node metastasis in endometrial carcinoma
    Kamura, T
    Yahata, H
    Shigematsu, T
    Ogawa, S
    Amada, S
    Kaku, T
    Nakano, H
    GYNECOLOGIC ONCOLOGY, 1999, 72 (03) : 387 - 391
  • [35] MELF Pattern for Predicting Lymph Node Involvement and Survival in Grade I-II Endometrioid-type Endometrial Cancer
    Sanci, Muzaffer
    Gungorduk, Kemal
    Gulseren, Varol
    Karadeniz, Tugba
    Kocaer, Mustafa
    Gungorduk, Ozgu
    Ozdemir, Isa A.
    INTERNATIONAL JOURNAL OF GYNECOLOGICAL PATHOLOGY, 2018, 37 (01) : 17 - 21
  • [36] A better way to predict lymph node involvement using machine-learning?
    Hung, Andrew J.
    BJU INTERNATIONAL, 2019, 124 (06) : 901 - 902
  • [37] Validation of Nomograms Predicting Lymph Node Involvement in Patients with Prostate Cancer Undergoing Extended Pelvic Lymph Node Dissection
    Hinev, Alexander I.
    Anakievski, Deyan
    Kolev, Nikolay H.
    Hadjiev, Vesselin I.
    UROLOGIA INTERNATIONALIS, 2014, 92 (03) : 300 - 305
  • [38] Factors predicting the non-sentinel lymph node involvement in breast cancer patients with sentinel lymph node metastases
    Boler, D. E.
    Uras, C.
    Ince, U.
    Cabioglu, N.
    BREAST, 2012, 21 (04): : 518 - 523
  • [39] Novel deep learning algorithm based MRI radiomics for predicting lymph node metastases in rectal cancer
    Weiqun Ao
    Sikai Wu
    Neng Wang
    Guoqun Mao
    Jian Wang
    Jinwen Hu
    Xiaoyu Han
    Shuitang Deng
    Scientific Reports, 15 (1)
  • [40] PREDICTING PELVIC LYMPH NODE INVOLVEMENT IN CURRENT-ERA PROSTATE CANCER
    Rahman, Sophia
    Cosmatos, Harry
    Dave, Giatri
    Williams, Stephen
    Tome, Michael
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2012, 82 (02): : 906 - 910