Let m(G)(I) denote the number of Laplacian eigenvalues of a graph G in an interval I. Our main result is that for graphs having domination number gamma, m(G)[0, 1) <= gamma, improving existing bounds in the literature. For many graphs, m(G)[0, 1) = gamma, or m(G)[0, 1) = gamma-1. (C) 2015 Elsevier Ltd. All rights reserved.
机构:
Tokyo Univ Sci, Dept Math Informat Sci, Shinjuku Ku, Tokyo 1628601, JapanTokyo Univ Sci, Dept Math Informat Sci, Shinjuku Ku, Tokyo 1628601, Japan
Furuya, Michitaka
Ozeki, Kenta
论文数: 0引用数: 0
h-index: 0
机构:
Res Org Informat & Syst, Natl Inst Informat, Chiyoda Ku, Tokyo 1018430, Japan
JST, ERATO, Kawarabayashi Large Graph Project, Kawaguchi, Saitama, JapanTokyo Univ Sci, Dept Math Informat Sci, Shinjuku Ku, Tokyo 1628601, Japan
Ozeki, Kenta
Sasaki, Akinari
论文数: 0引用数: 0
h-index: 0
机构:
Tokyo Univ Sci, Dept Math Informat Sci, Shinjuku Ku, Tokyo 1628601, JapanTokyo Univ Sci, Dept Math Informat Sci, Shinjuku Ku, Tokyo 1628601, Japan
机构:
Ege Univ, Fac Sci, Dept Math, Izmir, TurkiyeEge Univ, Fac Sci, Dept Math, Izmir, Turkiye
Ekinci, Gulnaz Boruzanli
Bujtas, Csilla
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
Univ Pannonia, Fac Informat Technol, Veszprem, HungaryEge Univ, Fac Sci, Dept Math, Izmir, Turkiye