Domination number and Laplacian eigenvalue distribution

被引:20
|
作者
Hedetniemi, Stephen T. [1 ]
Jacobs, David P. [1 ]
Trevisan, Vilmar [2 ]
机构
[1] Clemson Univ, Sch Comp, Clemson, SC 29634 USA
[2] Univ Fed Rio Grande do Sul, Inst Matemat, BR-91509900 Porto Alegre, RS, Brazil
关键词
GRAPHS; TREES;
D O I
10.1016/j.ejc.2015.11.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let m(G)(I) denote the number of Laplacian eigenvalues of a graph G in an interval I. Our main result is that for graphs having domination number gamma, m(G)[0, 1) <= gamma, improving existing bounds in the literature. For many graphs, m(G)[0, 1) = gamma, or m(G)[0, 1) = gamma-1. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:66 / 71
页数:6
相关论文
共 50 条
  • [31] Permanental Bounds of the Laplacian Matrix of Trees with Given Domination Number
    Xianya Geng
    Shuna Hu
    Shuchao Li
    Graphs and Combinatorics, 2015, 31 : 1423 - 1436
  • [32] Laplacian eigenvalue distribution based on some graph parameters
    Cui, Jiaxin
    Ma, Xiaoling
    FILOMAT, 2024, 38 (19) : 6881 - 6890
  • [33] DISTRIBUTION OF THE PRUFER ANGLE IN p-LAPLACIAN EIGENVALUE PROBLEMS
    Cheng, Yan-Hsiou
    Law, Chun-Kong
    Luo, Yu-Chen
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2014,
  • [34] A bound for the p-domination number of a graph in terms of its eigenvalue multiplicities
    Abiad, A.
    Akbari, S.
    Fakharan, M. H.
    Mehdizadeh, A.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 658 : 319 - 330
  • [35] Further results on the least Q-eigenvalue of a graph with fixed domination number
    Yu, Guanglong
    Wu, Yarong
    Zhai, Mingqing
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (12): : 2274 - 2287
  • [36] Bounds of signless Laplacian spectrum of graphs based on the k-domination number
    Liu, Huiqing
    Lu, Mei
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 440 : 83 - 89
  • [37] Upper Domination Number and Domination Number in a Tree
    Jou, Min-Jen
    ARS COMBINATORIA, 2010, 94 : 245 - 250
  • [38] Relation between the matching number and the second largest distance Laplacian eigenvalue of a graph
    Tian, Fenglei
    Wong, Dein
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 558 : 174 - 185
  • [39] Roman Domination Number and Domination Number of a Tree
    SONG Xiao-xin
    Department of Mathematics
    Department of Basic Course
    数学季刊, 2006, (03) : 358 - 367
  • [40] A note on Laplacian eigenvalues and domination
    Har, Jan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 449 : 115 - 118