The effect of boundaries on the asymptotic wavenumber of spiral wave solutions of the complex Ginzburg-Landau equation

被引:3
|
作者
Aguareles, M. [1 ]
机构
[1] Univ Girona, Dept Informat & Matemat Aplicada, Girona 17071, Spain
关键词
Spiral waves; Complex Ginzburg-Landau; Asymptotic wavenumber; CORE;
D O I
10.1016/j.physd.2014.03.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider an oscillatory medium whose dynamics are modeled by the complex Ginzburg-Landau equation. In particular, we focus on n-armed spiral wave solutions of the complex Ginzburg-Landau equation in a disk of radius d with homogeneous Neumann boundary conditions. It is well-known that such solutions exist for small enough values of the twist parameter q and large enough values of d. We investigate the effect of boundaries on the rotational frequency of the spirals, which is an unknown of the problem uniquely determined by the parameters d and q. We show that there is a threshold in the parameter space where the effect of the boundary on the rotational frequency switches from being algebraic to exponentially weak. We use the method of matched asymptotic expansions to obtain explicit expressions for the asymptotic wavenumber as a function of the twist parameter and the domain size for small values of q. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [21] Feedback control of travelling wave solutions of the complex Ginzburg-Landau equation
    Montgomery, KA
    Silber, M
    NONLINEARITY, 2004, 17 (06) : 2225 - 2248
  • [22] Response Functions of Spiral Wave Solutions of the Complex Ginzburg–Landau Equation
    I V Biktasheva
    V N Biktashev
    Journal of Nonlinear Mathematical Physics, 2001, 8 (Suppl 1) : 28 - 34
  • [24] Resonant Drift of Spiral Waves in the Complex Ginzburg-Landau Equation
    Irina V. Biktasheva
    Yury E. Elkin
    Vadim N. Biktashev
    Journal of Biological Physics, 1999, 25 : 115 - 127
  • [25] Resonant drift of spiral waves in the complex Ginzburg-Landau equation
    Biktasheva, IV
    Elkin, YE
    Biktashev, VN
    JOURNAL OF BIOLOGICAL PHYSICS, 1999, 25 (2-3) : 115 - 128
  • [26] Localized sensitivity of spiral waves in the complex Ginzburg-Landau equation
    Biktasheva, IV
    Elkin, YE
    Biktashev, VN
    PHYSICAL REVIEW E, 1998, 57 (03): : 2656 - 2659
  • [27] Modulation instability of solutions to the complex Ginzburg-Landau equation
    Aleksic, Branislav N.
    Aleksic, Najdan B.
    Skarka, Vladimir
    Belic, Milivoj R.
    PHYSICA SCRIPTA, 2014, T162
  • [28] Solutions of the lowest order complex Ginzburg-Landau equation
    Yomba, E
    Kofané, TC
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2000, 69 (04) : 1027 - 1032
  • [29] WEAK AND STRONG SOLUTIONS OF THE COMPLEX GINZBURG-LANDAU EQUATION
    DOERING, CR
    GIBBON, JD
    LEVERMORE, CD
    PHYSICA D, 1994, 71 (03): : 285 - 318
  • [30] On exact solutions of modified complex Ginzburg-Landau equation
    Yomba, E
    Kofané, TC
    PHYSICA D-NONLINEAR PHENOMENA, 1999, 125 (1-2) : 105 - 122