Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing

被引:1099
|
作者
King, Wayne E. [1 ]
Barth, Holly D. [2 ]
Castillo, Victor M. [2 ]
Gallegos, Gilbert F. [2 ]
Gibbs, John W. [1 ,3 ]
Hahn, Douglas E. [2 ]
Kamath, Chandrika [4 ]
Rubenchik, Alexander M. [5 ,6 ]
机构
[1] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA
[2] Lawrence Livermore Natl Lab, Engn Directorate, Livermore, CA 94550 USA
[3] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
[4] Lawrence Livermore Natl Lab, Computat Directorate, Livermore, CA 94550 USA
[5] Lawrence Livermore Natl Lab, NIF, Livermore, CA 94550 USA
[6] Lawrence Livermore Natl Lab, Photon Sci Directorate, Livermore, CA 94550 USA
关键词
Keyhole-mode laser melting; Additive manufacturing; Powder-bed fusion; Selective laser sintering; Selective laser melting; Direct metal laser sintering; STAINLESS-STEEL;
D O I
10.1016/j.jmatprotec.2014.06.005
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Laser powder-bed fusion additive manufacturing of metals employs high-power focused laser beams. Typically, the depth of the molten pool is controlled by conduction of heat in the underlying solid material. But, under certain conditions, the mechanism of melting can change from conduction to so-called "keyhole-mode" laser melting. In this mode, the depth of the molten pool is controlled by evaporation of the metal. Keyhole-mode laser melting results in melt pool depths that can be much deeper than observed in conduction mode. In addition, the collapse of the vapor cavity that is formed by the evaporation of the metal can result in a trail of voids in the wake of the laser beam. In this paper, the experimental observation of keyhole-mode laser melting in a laser powder-bed fusion additive manufacturing setting for 316L stainless steel is presented. The conditions required to transition from conduction controlled melting to keyhole-mode melting are identified. (c) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:2915 / 2925
页数:11
相关论文
共 50 条
  • [11] In-situ Synchrotron imaging of keyhole mode multi-layer laser powder bed fusion additive manufacturing
    Chen, Yunhui
    Clark, Samuel J.
    Leung, Chu Lun Alex
    Sinclair, Lorna
    Marussi, Sebastian
    Olbinado, Margie P.
    Boller, Elodie
    Rack, Alexander
    Todd, Iain
    Lee, Peter D.
    APPLIED MATERIALS TODAY, 2020, 20
  • [12] Identifying the keyhole stability and pore formation mechanisms in laser powder bed fusion additive manufacturing
    Guo, Liping
    Liu, Hanjie
    Wang, Hongze
    Wei, Qianglong
    Xiao, Yakai
    Tang, Zijue
    Wu, Yi
    Wang, Haowei
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2023, 321
  • [13] Keyhole fluctuation and pore formation mechanisms during laser powder bed fusion additive manufacturing
    Huang, Yuze
    Fleming, Tristan G.
    Clark, Samuel J.
    Marussi, Sebastian
    Fezzaa, Kamel
    Thiyagalingam, Jeyan
    Leung, Chu Lun Alex
    Lee, Peter D.
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [14] Keyhole fluctuation and pore formation mechanisms during laser powder bed fusion additive manufacturing
    Yuze Huang
    Tristan G. Fleming
    Samuel J. Clark
    Sebastian Marussi
    Kamel Fezzaa
    Jeyan Thiyagalingam
    Chu Lun Alex Leung
    Peter D. Lee
    Nature Communications, 13
  • [15] Keyhole pores reduction in laser powder bed fusion additive manufacturing of nickel alloy 625
    Yeung, H.
    Kim, F. H.
    Donmez, M. A.
    Neira, J.
    INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 2022, 183
  • [16] Mitigating keyhole pore formation by nanoparticles during laser powder bed fusion additive manufacturing
    Qu, Minglei
    Guo, Qilin
    Escano, Luis I.
    Clark, Samuel J.
    Fezzaa, Kamel
    Chen, Lianyi
    ADDITIVE MANUFACTURING LETTERS, 2022, 3
  • [17] In situ absorptivity measurements of metallic powders during laser powder-bed fusion additive manufacturing
    Trapp, Johannes
    Rubenchik, Alexander M.
    Guss, Gabe
    Matthews, Manyalibo J.
    APPLIED MATERIALS TODAY, 2017, 9 : 341 - 349
  • [18] Correlation between surface texture and internal defects in laser powder-bed fusion additive manufacturing
    Makiko Yonehara
    Chika Kato
    Toshi-Taka Ikeshoji
    Koki Takeshita
    Hideki Kyogoku
    Scientific Reports, 11
  • [19] Correlation between surface texture and internal defects in laser powder-bed fusion additive manufacturing
    Yonehara, Makiko
    Kato, Chika
    Ikeshoji, Toshi-Taka
    Takeshita, Koki
    Kyogoku, Hideki
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [20] Internal surface roughness enhancement of parts made by laser powder-bed fusion additive manufacturing
    Ali, Usman
    Fayazfar, Haniyeh
    Ahmed, Farid
    Toyserkani, Ehsan
    VACUUM, 2020, 177