Object Storage for Deep Learning Frameworks

被引:4
|
作者
Ozeri, Or [1 ]
Ofer, Effi [1 ]
Kat, Ronen [1 ]
机构
[1] IBM Res, Haifa, Israel
关键词
Machine Learning; Deep Learning; Object Storage;
D O I
10.1145/3286490.3286562
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The advent of big datasets and high speed GPUs is fueling the growth in machine and deep learning techniques. In this paper we explore storing the training data in object storage and demonstrate how this can be done effectively while providing sufficient throughput to high performance GPUs.
引用
收藏
页码:21 / 24
页数:4
相关论文
共 50 条
  • [31] ADELT: Transpilation between Deep Learning Frameworks
    Gong, Linyuan
    Wang, Jiayi
    Cheung, Alvin
    PROCEEDINGS OF THE THIRTY-THIRD INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2024, 2024, : 6279 - 6287
  • [32] Quantization Backdoors to Deep Learning Commercial Frameworks
    Ma, Hua
    Qiu, Huming
    Gao, Yansong
    Zhang, Zhi
    Abuadbba, Alsharif
    Xue, Minhui
    Fu, Anmin
    Zhang, Jiliang
    Al-Sarawi, Said F.
    Abbott, Derek
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2024, 21 (03) : 1155 - 1172
  • [33] AUDEE: Automated Testing for Deep Learning Frameworks
    Guo, Qianyu
    Xie, Xiaofei
    Li, Yi
    Zhang, Xiaoyu
    Liu, Yang
    Li, Xiaohong
    Shen, Chao
    2020 35TH IEEE/ACM INTERNATIONAL CONFERENCE ON AUTOMATED SOFTWARE ENGINEERING (ASE 2020), 2020, : 486 - 498
  • [34] Various Frameworks and Libraries of Machine Learning and Deep Learning: A Survey
    Zhaobin Wang
    Ke Liu
    Jian Li
    Ying Zhu
    Yaonan Zhang
    Archives of Computational Methods in Engineering, 2024, 31 : 1 - 24
  • [35] Various Frameworks and Libraries of Machine Learning and Deep Learning: A Survey
    Wang, Zhaobin
    Liu, Ke
    Li, Jian
    Zhu, Ying
    Zhang, Yaonan
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2024, 31 (01) : 1 - 24
  • [36] Multitask Learning for Object Localization With Deep Reinforcement Learning
    Wang, Yan
    Zhang, Lei
    Wang, Lituan
    Wang, Zizhou
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2019, 11 (04) : 573 - 580
  • [37] Combining Deep Learning and Preference Learning for Object Tracking
    Pang, Shuchao
    Jose del Coz, Juan
    Yu, Zhezhou
    Luaces, Oscar
    Diez, Jorge
    NEURAL INFORMATION PROCESSING, ICONIP 2016, PT III, 2016, 9949 : 70 - 77
  • [38] Benchmarking Automated Machine Learning (AutoML) Frameworks for Object Detection
    de Oliveira, Samuel
    Topsakal, Oguzhan
    Toker, Onur
    INFORMATION, 2024, 15 (01)
  • [39] Robustness Analysis of Deep Learning Frameworks on Mobile Platforms
    Abyane, Amin Eslami
    Hemmati, Hadi
    TESTING SOFTWARE AND SYSTEMS, ICTSS 2021, 2022, 13045 : 160 - 177
  • [40] DLBench: a comprehensive experimental evaluation of deep learning frameworks
    Elshawi, Radwa
    Wahab, Abdul
    Barnawi, Ahmed
    Sakr, Sherif
    Cluster Computing, 2021, 24 (03) : 2017 - 2038