Object Storage for Deep Learning Frameworks

被引:4
|
作者
Ozeri, Or [1 ]
Ofer, Effi [1 ]
Kat, Ronen [1 ]
机构
[1] IBM Res, Haifa, Israel
关键词
Machine Learning; Deep Learning; Object Storage;
D O I
10.1145/3286490.3286562
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The advent of big datasets and high speed GPUs is fueling the growth in machine and deep learning techniques. In this paper we explore storing the training data in object storage and demonstrate how this can be done effectively while providing sufficient throughput to high performance GPUs.
引用
收藏
页码:21 / 24
页数:4
相关论文
共 50 条
  • [21] Object Detection based on Deep Learning
    Dong, Junyao
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, VIRTUAL REALITY, AND VISUALIZATION (AIVRV 2021), 2021, 12153
  • [22] Exploiting Parallelism Opportunities with Deep Learning Frameworks
    Wang, Yu Emma
    Wu, Carole-Jean
    Wang, Xiaodong
    Hazelwood, Kim
    Brooks, David
    ACM TRANSACTIONS ON ARCHITECTURE AND CODE OPTIMIZATION, 2021, 18 (01)
  • [23] Deep Learning Frameworks on Apache Spark: A Review
    Venkatesan, Nikitha Johnsirani
    Nam, ChoonSung
    Shin, Dong Ryeol
    IETE TECHNICAL REVIEW, 2019, 36 (02) : 164 - 177
  • [24] Deep Learning Model for Object Detection
    Hristeva, T.
    Marinova, M.
    Lazarov, V.
    PROCEEDINGS OF THE 45TH INTERNATIONAL CONFERENCE ON APPLICATION OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE'19), 2019, 2172
  • [25] Influence of Object Detection in Deep Learning
    Yu, Rui
    Xu, Xiangyang
    Wang, Zhigang
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2018, 22 (05) : 683 - 688
  • [26] The Object Detection Based on Deep Learning
    Tang, Cong
    Feng, Yunsong
    Yang, Xing
    Zheng, Chao
    Zhou, Yuanpu
    2017 4TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND CONTROL ENGINEERING (ICISCE), 2017, : 723 - 728
  • [27] Deep Learning for Combo Object Detection
    Zhao, Jing
    Ardekani, Iman Tabatabaei
    Pang, Shaoning
    NEURAL INFORMATION PROCESSING (ICONIP 2019), PT I, 2019, 11953 : 125 - 137
  • [28] Experimental Characterizations and Analysis of Deep Learning Frameworks
    Wu, Yanzhao
    Cao, Wenqi
    Sahin, Semih
    Liu, Ling
    2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 372 - 377
  • [29] DLBench: An Experimental Evaluation of Deep Learning Frameworks
    Mahmoud, Nesma
    Essam, Youssef
    Elshawi, Radwa
    Sakr, Sherif
    2019 IEEE INTERNATIONAL CONGRESS ON BIG DATA (IEEE BIGDATA CONGRESS 2019), 2019, : 149 - 156
  • [30] Improving the Expressiveness of Deep Learning Frameworks with Recursion
    Jeong, Eunji
    Jeong, Joo Seong
    Kim, Soojeong
    Yu, Gyeong-In
    Chun, Byung-Gon
    EUROSYS '18: PROCEEDINGS OF THE THIRTEENTH EUROSYS CONFERENCE, 2018,